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ABSTRACT

In this paper, we present a low-maintenance, wind-powered, battery-
free, biocompatible, tree wearable, and intelligent sensing system,
namely IoTree, to monitor water and nutrient levels inside a liv-
ing tree. IoTree system includes tiny-size, biocompatible, and im-
plantable sensors that continuously measure the impedance varia-
tions inside the living tree’s xylem, where water and nutrients are
transported from the root to the upper parts. The collected data are
then compressed and transmitted to a base station located at up to 1.8
kilometers (approximately 1.1 miles) away. The entire IoTree system
is powered by wind energy and controlled by an adaptive computing
technique called block-based intermittent computing, ensuring the
forward progress and data consistency under intermittent power and
allowing the firmware to execute with the most optimal memory and
energy usage. We prototype IoTree that opportunistically performs
sensing, data compression, and long-range communication tasks
without batteries. During in-lab experiments, IoTree also obtains the
accuracy of 91.08% and 90.51% in measuring 10 levels of nutrients,
𝑁𝐻3 and 𝐾2𝑂 , respectively. While tested with Burkwood Viburnum
and White Bird trees in the indoor environment, IoTree data strongly
correlated with multiple watering and fertilizing events. We also
deployed IoTree on a grapevine farm for 30 days, and the system is
able to provide sufficient measurements every day.
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Figure 1: IoTree’s Concept [14].

1 INTRODUCTION

Global agriculture will need to produce more food in the next 50
years than in the previous ten thousand years to feed the growing pop-
ulation [1]. In modern agriculture, a few crops known to have high
yields are selected to grow intensively [2]. Growing a few varieties
of trees makes our food supply vulnerable to pests and diseases, lead-
ing to the overuse of fertilizers. Such chemicals make our farmland
less productive and the food we grow less nutritious [3–5]. In the
U.S., more than 1,700 trillion BTU (about $17B) of energy was for
agriculture annually [6, 7], nearly 30% of this was for fertilizer pro-
duction, yet the nitrogen fertilizer efficiency is 33% globally [8, 9].
Understanding how crops grow will help reduce the use of fertilizers,
chemicals, and water and design novel and sophisticated growing
techniques like intercropping [10, 11] and cover cropping [12, 13]
to restore soil fertility and increase crop productivity.

Advanced soil sensors [15–17], camera-based sensors [18], and
sap sample analyses [19] have been proposed to derive water and
nutrient uptake behaviors of trees. However, soil sensors provide
unreliable insights since the data are not derived from the tree body.
Moreover, as these sensors are required to be buried at 40 cm below
the ground [20], the deployment cost is high, and the soil-to-air wire-
less communication is also unreliable [21]. Second, camera-based
solutions cannot provide tree’s internal signals while performing
poorly under low-light, rainy, and dusty conditions. Last but not
least, extracted sap samples can be analyzed offline later to infer the
water and nutrient contained inside the tree [19], but these techniques
are costly [22], complex, time-consuming, and labor intensive [23].
As the measurements are not obtained from the living tree, and the
real-time impact of the environments are also unclear [24, 25].

In this project, we develop wind-powered, low maintenance,
battery-free, biocompatible, implantable, tree wearable, and intel-
ligent sensing system, namely IoTree, that continuously captures
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Figure 2: IoTree’s system overview.

signals inside a living tree to infer the tree’s water and nutrient levels
(Fig. 1). IoTree system measures impedance variations inside the
tree’s xylem, where nutrients and water from the root are transported
to the upper parts, before compressing the collected data and trans-
mitting to a base station at up to 1.8 km (approximately 1.1 miles) of
distance. The entire IoTree system is powered by wind and controlled
by an adaptive block-based intermittent computing algorithm. Such
a battery-free sensing system for trees will provide an opportunity
for ultra-long multi-day missions, low maintenance, and a lower
ecological impact since plugged-in or battery-powered devices are
unsuitable for a dense and long-term deployment. However, realizing
this vision is difficult due to the following challenges:

• Many sensors have been developed to monitor human physiologi-
cal signals, but very few target tree health monitoring. Building
robust and biocompatible sensors for tree monitoring faces multi-
ple challenges from design to implementation as the differences
between human epidermis composition and tree bark composition.
• Since unpredictable weather conditions (i.e., sunny, rainy, or

windy), especially on the farm-settings, could heavily impact
the system’s performance, building battery-free and low-power
sensing hardware and software that can to provide reliable mea-
surements under outdoor settings is a difficult task.
• Just like humans, trees grow over night [26, 27]. Hence, solar-

based battery-free computing systems are not well-suited for tree
monitoring. We found that wind is a great resource, but developing
a wind-based battery-free system is challenging due to frequent
power failures caused by unpredictable wind availability.
• IoTree’s tasks (sensing, computing, and long-range communica-

tion) consume different power levels; the computing technique
needs to adaptively update its run-time scheduler to fully utilize
the harvested energy and complete the user requirements.

Contributions. In this paper, we make the following contributions.
(1) We develop a biocompatible fiber-based sensor to monitor water
and nutrient levels inside the tree body. (2) We derive a battery-
free and low-power sensing algorithm to measure signals inside
the tree body reliably under multiple environmental conditions. (3)
We design and implement a block-based intermittent computing
algorithm allowing IoTree to fully utilize the harvested energy and
perform its task with the optimal memory and energy requirements.
(4) We prototype IoTree that opportunistically performs sense, data
compression, and long-range communication without requiring any
battery and maintenance. (5) We evaluate the system with in-lab and

show that IoTree obtains 91.08% and 90.51% of accuracy in measur-
ing 10 levels of nutrients, 𝑁𝐻3 and 𝐾2𝑂 , respectively. When tested
with Burkwood Viburnum and White Bird trees in the indoor envi-
ronment, IoTree data strongly correlate with multiple soil stimuli
(watering and fertilizing) events. We also deployed IoTree in the
wild for 30 days, and the results show that IoTree is able to provide
sufficient measurements every day. The system reports 558 measure-
ments a day with a distance of up to 1.8 kilometers without requiring
any batteries or maintenance.

Potential Applications. IoTree platform has potential to be used in
precision agriculture [28], pH monitoring [29], global warming [30],
crop monitoring [31, 32], plant physiology research [33], plant dis-
ease monitoring and pest control [34], forest monitoring [35], to
name a few. Beside tree monitoring applications, the proposed sys-
tem can be used as a soil sensor to monitor pH level and other
information in a forest or contaminated areas [29, 35]. Addition-
ally, the current single-hop network architecture can be extended to
multi-hop network architecture to be used larger farms or in national
forests, typically in cases where the deployment area is relatively
large (approximately a few hundred kilometers squared [36]). The
hardware design, firmware, and software libraries of IoTree will
be made publicly available. The open 3D design, hardware, and
software libraries can be used as an inexpensive educational tool, al-
lowing graduate students, phytologists, bioengineers, and hobbyists
to access signals inside the tree body in real-time.

2 FUNDAMENTALS OF TREE SENSING

IoTree relies on the unique chemoelectrical relationship between
water, nitrogen (N), and potassium (K) ion levels inside the xylem
sap of trees and the measured impedance levels. In this section, we
will provide the background on ion ratio inside the living tree and
why water/nutrient level changes will create impedance variations.

Ion Ratio Inside Living Trees. This study focuses on water, nitro-
gen, and potassium monitoring since they are the most important
substance in tree development [37–39]. Other mineral elements such
as phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), and
sodium (Na) also have vital factors in facilitating metabolism [38].
However, we reserve these studies for future work. To be specific,
tree roots take up nutrients from the soil by absorbing their ions.
Transceptor proteins of the roots regulate the nutrient uptake through
an absorption process, causing by the difference between inside and
outside ion concentrations of the roots [40]. After being taken by the
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Figure 3: The developed sensors and overview working principle

of the impedance sensing circuit.

root through the nitrogen fixation process, nitrogen is transported
inside the tree under the form of nitrate (𝑁𝑂−3 ), nitrite (𝑁𝑂−2 ), or
ammonium (𝑁𝐻+

4 ) [40]. The nitrogen for healthy trees is maintained
from 3% to 4% in their tissues [41], while the concentration of
potassium (𝐾+) at 80-100 mM inside the tree cells [42].

Impedance Variations Created by Ion Changes. As the roots
uptake nutrients from the soil and transport their ions through the
xylem, the impedance changes accordingly to each ion’s concen-
tration [43]. Previous vitro experiments [44, 45] showed a strong
correlation between the measured impedance spectra (from 1 Hz
to 1 MHz) and a wide range of 𝑁𝑂−3 ion concentrations. They also
confirmed that the resistance-capacitance parallel circuit model can
be used to explain the behavior of ionic charges in ionic conduc-
tors [46]. Further studies [47, 48] also found similar results on the
relationship between the concentration of nutrient ions (𝐾+, 𝑁𝐻+

4 )
and impedance spectra of its medium. This relationship will be later
confirmed in our experiments in Fig. 11 (Sec. 8.1).

To sum up, we can infer tree’s health from ion levels by measur-
ing the impedance level inside the xylem; however, multiple hinders
need to be overcome to make such a reliable system. First, a bio-
compatible solution needs to be developed; indeed, biocompatible
sensors have been developed for human [49, 50], their applicability
for tree is unclear. Second, battery-powered devices are not good
choices for large-scale and long-term deployment in farm settings.
However, existing battery-free solutions are solar-based setups [51–
53] and their concepts are unsuitable for overnight and continuous
sensing. In following sections, we will describe the proposed system
to address the above challenges, followed by the detailed design, im-
plementation, and evaluation with in-lab and outdoor experiments.

3 IOTREE SYSTEM OVERVIEW

We design and implement IoTree with the following goals. First,
the sensors should be implanted onto the tree’s tissue to capture
the signals inside the tree. Second, IoTree must require the least
maintenance since it will be deployed on a large scale, and frequent
charging or replacing batteries is not practical in agriculture settings.
Thus, the system has to harvest the wind energy and use the collected
energy optimally by intrinsically re-configuring the program into
blocks. Last but not least, IoTree must be able to transmit data at a
long distance, particularly at a distance of the size of typical farms.
To meet these goals, we design IoTree as shown in Fig. 2. The details
of each component are as follows:
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Biocompatible Sensors. We develop impedance-based sensors that
consists of two fiber electrodes made by biocompatible materials
(Sec. 4.1). The sensing circuit generates sweeping frequency signals
and measures the responses to calculate the impedance. Multiple
pairs of sweeping frequencies and the value calculated from Discrete
Fourier Transform are used to form impedance profiles to infer the
water and nutrient levels (Sec. 4.2).

Energy Harvesting & Power Management. IoTree system operates
by the wind energy (Sec. 5). We design a lightweight wind energy
harvester, including a custom-built wind indicator to maximize the
harvested power. Additionally, we also carefully analyze the wind
behaviors in the deployed area to ensure that the harvested energy is
sufficient to perform IoTree’s important tasks.

Long-range Communication. Since IoTree will be deployed on-
farm settings, it needs to transmit data on the farm to the base station
reliably. The average farm size in the U.S. is 444 acres [54]; hence,
the typical communicating distance requirement for the device is
0.59 miles (0.95 km). Therefore, we adopt LoRa communication to
enable reliable, low-noise, and low-power communication. IoTree re-
ports data continuously to the base station at 1.8 kilometers (Sec. 5).

Block-based Intermittent Computing. We propose a block-based
intermittent computing approach that is able to intrinsically change
the number of blocks and the size of each block to minimize the
memory overhead and wasted energy compared to state-of-the-
art intermittent computing solutions (i.e., task-based [55, 56] and
checkpoint-based [57–60] approaches). The proposed block-based
approach adaptively changes the number of blocks and the size of
each block to minimize the memory overhead and wasted energy.
After rebooting, IoTree can recover from the last executed block in
the task instead of restarting from the beginning of the task (Sec. 6).

4 SENSOR DEVELOPMENT

4.1 Sensor Design & Fabrication

As IoTree’s sensors are implanted inside the tree, it needs to be
tiny-sized and biocompatible. We propose a fiber-based impedance
sensor that meets our design requirements. We fabricate conductive
fibers and use them to manufacture fiber-based impedance sensors.
The details of fabrication process are as follows:

Fabrication of Conductive Microfibers: The conductive microfiber
are made from reduced graphene oxide (rGO), polyurethane (PU),
and silver nanowires (Ag-NWs) via a wet spinning method [62, 63].
Firstly, PU pellets was dissolved dimethylacetamide (DMAC) to
form PU solution. AgNWs and GO dispersed in DMAC were mixed
with PU solution to form a homogeneous mixed solution. Hence,
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compared to solar energy.

this solution was injected into a DI water coagulation bath through
a single steel nozzle to form the GO/PU/AgNWs gel microfibers.
Next, the gel is reduced by the ascorbic acid solution to generate
conductive soft rGO/PU/AgNWs microfibers. Lastly, the substance
is taken out and dried at 120◦𝐶 for two hours in a vacuum oven.

Fabrication of Impedance Sensors: The sensor includes two con-
ductive soft rGO/PU/AgNW microfiber electrodes as shown in Fig.
3. The microfibers are directly used as a working electrode (WE). To
develop the reference electrode (RE), we coat the rGO/PU/AgNW
microfibers in Ag/AgCl. Then, the WE and RE microfiber electrodes
are aligned in parallel with a distance of 2 mm between each other to
form a soft impedance sensor. The rGO and AgNWs were embedded
in PU. The PU is a segmented polymer with soft segment to provide
high flexibility and hard segment to provide high strength and good
resistance to water and chemical [50, 64, 65] . Moreover, PU also
presents unique chemistry with a molecular structure similar to that
of human proteins. Thus, the impedance sensors made from rGO/
PU/AgNWs microfibers will provide high biocompatibility, and a
great facility for living inside trees [49, 50].

In-lab Sensors Sensitivity Validation. We validate sensors using
VSP Potentiostat device [61]. Fig. 4 shows the impedance profiles
measured by the device, showing the visual distinguishable differ-
encé among amounts of water applied to the same volume, yielding
that the sensors are sensitive and reliable. However, this VSP Po-
tentiostat is heavy (9 kg), big (95 mm × 435 mm × 335 mm), and
expensive ($4k). It is not suitable for outdoor tree monitoring.

4.2 Sensing Technique

Sensing Principle. We develop an inexpensive, low-power, and
small-sized sensing circuit to replace VSP Potentiostat [61] with
the working principle shown in Fig.3. In particular, we apply an
excitation voltage signal𝑈 on one electrode to measure impedance,
and the resulting current 𝐼 is measured at another electrode. As-
suming an alternating current with frequency 𝑓 applied to the first
electrode (the applied voltage is 𝑣(𝑡 ) = 𝑈0𝑐𝑜𝑠(𝜔𝑡 )) creates current
𝑖(𝑡 ) = 𝐼0𝑐𝑜𝑠(𝜔𝑡 + 𝜑) in the second electrode, where (𝜑) is the phase
shift between 𝑣(𝑡 ) and 𝑖(𝑡 ); 𝜔 = 2𝜋 𝑓 . Impedance 𝑍 can be presented
in polar form: 𝑍 = |𝑍 |𝑒 𝑗𝜑 = |𝑍 |(𝑐𝑜𝑠(𝜑) + 𝑗𝑠𝑖𝑛(𝜑)), where |𝑍 | is the ra-
tio between voltage amplitude and current amplitude. Another form
representing impedance uses the Cartesian form: 𝑍 = 𝑅 + 𝑗𝑋 , where
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𝑅 is real value, and 𝑋 is imaginary value. The transformation from
polar form to Cartesian form is calculated by 𝑅 = |𝑍 |𝑐𝑜𝑠(𝜑), and
𝑋 = |𝑍 |𝑠𝑖𝑛(𝜑), while the transformation from the Cartesian form to
the polar form is calculated by |𝑍 |=

√
𝑅2 + 𝐼2, and 𝜑 = 𝑡𝑎𝑛−1(𝐼/𝑅).

Signal Processing. Due to the high impedance of the monitor-
ing object (from 200 KΩ to 1 MΩ), the response signals are fee-
ble. Therefore, these signals are amplified by the chain of two
amplifiers before being filtered and sampled. This chain includes
one external amplifier and one on-chip PGA. Both amplifier gains
can be configured by adjusting the value of 𝑅𝐺 and 𝐺𝐴. Conse-
quently, the signals at the input pin of the Low-Pass filter can be
calculated by 𝑉𝑟 = (𝑅𝐺/𝑅𝑆 ) · 𝐺𝐴 · 𝑉𝑥 before being sampled by
ADC, where 𝑅𝐺 is gain resistor value, 𝑅𝑆 is object resistance value,
𝐺𝐴 is PGA gain factor, and 𝑉𝑥 is excitation signals. For each fre-
quency, the impedance 𝑍 (𝑓 ) is calculated by DFT using equation:
𝑍 (𝑓 ) =

∑1023
𝑛=0 (𝑥 (𝑛)(𝑐𝑜𝑠(𝑛) − 𝑗 · 𝑠𝑖𝑛(𝑛))), where 𝑍 (𝑓 ) is the impedance

at frequency 𝑓 , 𝑥 (𝑛) is the sampling result at the time 𝑛. As a re-
sult, we can calculate the real and imaginary values from 𝑍 (𝑓 ).
Multiple-frequency sweeping technique is used to ensure the diverse
characteristics of the substances retrieved from the response signals.
The schematic of the impedance circuit is shown in Fig. 3.

Sensing Circuit. We build the circuit based on impedance analyzer
chip AD5933 [66]. We select this Integrated Circuit (IC) because
of its reliability and low power consumption (11 mA in operation
mode). The IC includes a frequency generator that modulates 1 Hz
to 1 MHz excitation signals. The response signals will be sampled
by 12-bit ADC and calculated by Discrete Fourier Transform (DFT)
supported by hardware. We also design an external amplifier that
works along with an internal programmable gain amplifier. After
sweeping one specific frequency, we can get four bytes (two bytes
for real value and two for imaginary value) resulting from DFT
processing. Every four bytes are stored in the FRAM and managed
by the block-based computing algorithm (Sec. 6).

No.Measurements No.Bytes LZW Ratio Huffman Ratio
1 64 0.72 1.55
2 128 0.61 1.27
3 192 0.56 1.09
4 256 0.55 1.02

Table 1: Compression ratio for IoTree’s data

Data Compression. Due to the high energy consumption of the
communication task, data compression is needed for IoTree

communication. We adopt LZW [67] for data compression thanks to
its simplicity and reliability. LZW avoids the overhead of sending
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a dictionary used to decode data like Huffman coding [68]. More
importantly, LZW can work well if the input data is sufficient. Our
implementation of impedance profile measurement includes 64 bytes,
therein 16 sweeping frequencies, each occupying four bytes. Our
observation on data collection is that one measure may be slightly
different from others if the data are collected close in time. If we
send raw bytes data, the compression algorithm cannot work well
because each byte entry value distributes in a range of from 0 to
255. However, most differential data between the two measures
are distributed from 0 to 50, so the room for data compression is
intensified. We define the compression ratio as output size divided
by input size, and Table 1 shows that LZW outperforms Huffman
with IoTree’s sensing data. The more data we compress, the better
performance we obtain. We choose the number of measurements
based on application need and MCU’s memory size.

5 WIRELESS COMMUNICATION &

BATTERY-FREE DESIGN

5.1 Long-Range Wireless Communication

IoTree supports long-range communication to ensure that the system
meets the requirement of agriculture deployment. We examine vari-
ous solutions including NB-IoT [69] and LTE-M [70], Wi-Fi [71],
Backscatter [72], LoRa backscatter [73], and LoWAN [74]. NB-IoT
and LTE-M provide promising concepts of low-powered and long-
range communication allowing the device to upload data directly to
the internet. However, current 5G NB-IoT and LTE-M prototypes are
only available from a few vendors, and they consume high power and
require a power outlet supply. More importantly, they do not support
custom-built implementation and are not free of charge. Backscatter
and LoRa backscatter are promising concepts. They are also consid-
ered as the most suitable designs for IoTree. However, Backscatter
supports a short distance of communication while LoRa-backscatter
faces challenges in concurrent communications [73, 75]. Wi-Fi and
Bluetooth 4.0 [76] are two other popular techniques that can be used
for IoTree. However, Wi-Fi consumes high power while Bluetooth
only provides a short distance of communication.

To confirm the correctness and feasibility of designing IoTree ’s
wireless communication, we conduct experiments to evaluate two
commodities of wireless communication technologies, including
Bluetooth and Wi-Fi, by two metrics: communication distance and
energy consumption. We set up the communication experiments in
the open space with the light of sight (LOS) condition. The Wi-Fi
module can communicate up to 50 meters and consume peak power
of 800 mW, while the Bluetooth module reaches 10 meters and con-
sume the power of 180 mW. Therefore, we decide to use LoRa as
the main communication protocol for IoTree to ensure the system’s
usability, reliability, and practicality. While LoRa consumes more
power than state-of-the-art low-power long-range communication
such as LoRa Backscatter [73] or modified Bluetooth 4.0 [77], our
hardware design can be easier integrate with LoRa Backscatter or
Bluetooth 4.0 hardware if they are available in the market. We im-
plement Lora module using RFIC SX1276 from SEMTECH [78].
The IC operates at frequency 915 MHz and consumes 100 mW at
a maximum transmitting power of 20 dBm. In an ideal environ-
ment with the LOS conditions, LoRa communication should support
communication distance up to 3 kilometers.

5.2 Battery-free Design

Rechargeable batteries can be used to power the IoTree for long-
term deployment (e.g., a 500 mAh LiPo battery can power the entire
system for up to 34 hours). However, batteries have some common
limitations, such as limited charging cycles, substantial heat gen-
eration, and degradation over time. They must be replaced after
roughly three years, even with careful and regular maintenance.
We examined multiple energy harvesting methods including solar-
based [79], piezoflag-based [80], heat-based [81], wind-based [82].
The solar-based method provides reliable and constant power, but its
performance is reduced when the light is blocked by the tree. In addi-
tion, it does not work during the night. Heat-based energy-harvesting
prototype with 𝑐𝑚2 size does not provide sufficient energy to power
the circuit [81]. The flag-based approach does not provide efficient
power (average of 3.1 mW) within the same period of time compared
to the turbine-based approach (average of 8.0 mW). Furthermore, the
piezoelectric flags ($160) are much more expensive than the motor
for the wind turbine ($2). Hence, wind energy is the most suitable
and practical solution.

We develop an energy harvesting circuit as shown in Fig. 6 (a).
The harvesting circuit includes a boost controller and a buck con-
troller, optimizing the conversion performance from observed wind
power to usable energy. The boost controller harvests energy from
the lowest power (2.2 V, 1.1 mA at 2.2 m/s) up to the highest power
(12 V, 13.7 mA at 12 m/s) of the motor to charge a storage capaci-
tor while typical wind speed in the testing area is from 2 m/s to 8
m/s as shown in Fig. 6 (b). This capacitor plays a role as a static
energy buffer to power the circuit. When the storage capacitor’s
voltage reaches the defined threshold, the comparator triggers the
buck controller to power the primary computing circuit.

Wind energy is unpredictable and non-uniformly distributed in
any geographical area. To validate this theory, we operate two har-
vesting circuits at a distance of 5 cm and 1.5 m and measure voltage
from these two circuits. We also measure the solar energy at these
locations. Fig. 5 (a) and Fig. 5 (b) show the capacitor voltages from
two wind harvesters that are 5 cm and 1.5 m apart, respectively. As
can be seen from these figures, the harvested wind energy is different
in both cases, while the energy obtained from solar power is almost
constant. In Sec. 6, we will discuss why that is the greatest hinders
in designing the battery-free wind-powered system and describe our
proposed solution to well-address it.

6 BLOCK-BASED COMPUTING

Motivation. A main objective of designing a battery-free system is
to maintain forward progress and data consistency [55]. Although
efforts have been made to deal with intermittent characteristics of har-
vested energy in battery-free systems, existing works focus mostly
on solar-based systems [83, 84]. However, these solar-based tech-
niques are not well-suited to tree health monitoring as trees grow
overnight exactly when solar energy is unavailable. Moreover, exist-
ing intermittent computing techniques are limited in terms of energy
consumption. First, the checkpoint-based approach takes snapshots
of the entire system, including stack functions, local variables, global
variables, and others before power failure, and then restores these
snapshots after the power returns. While this technique is extremely
efficient in energy utilization since the code will be resumed at the
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block numbers and block size will be changed to optimal config-

uration, which minimizes wasted energy.

precise location, they result in much memory overhead due to stor-
ing, restoring, and rebooting efforts and some lack of consideration
of data consistency caused by idempotent violation [56, 85, 86].
Second, the task-based approach stores the states of executed tasks
before power failure; the unfinished task has to be re-executed from
the beginning of the task. By doing so, the system only needs to
store/restore the states of the completed tasks instead of the entire
system. This method is efficient in minimizing the memory overhead.
It is, however, inefficient in energy utilization because if the power
fails in the middle of the task, that task is going to be re-executed
from the beginning. Lastly, most of the state-of-the-art intermittent
focus on optimizing energy buffer for MCU (computing), while other
tasks use separated energy buffers, causing a lack of synchronization
between energy buffers, and energy is hard to manage [86].

HarvOS [86] – a checkpoint-based technique – strives to minimize
wasted energy by seeking out the minimum number of checkpoints
for an arbitrary program. The optimal checkpoints are the ones that
are closest to the last practical checkpoints. Undoubtedly, HarvOS
well-performs in systems with consistent energy consumption, but
it does not guarantee the most optimal location for checkpoints in
a program that requires different energy levels to execute a code
segment iteratively (i.e., sensing). In IoTree, the energy consump-
tion varies when performing multiple sweeping frequencies in the
sensing task. In these scenarios, many energy levels are required to
execute tasks, making HarvOS challenging in locating where the
best checkpoints should be. Therefore, HarvOS is not well-suited
for a device performing sensing tasks, particularly in the IoTree use
cases. Also, HarvOS places the trigger calls for checkpoints based
on Control Flow Graph (CFG) when analyzing the program dur-
ing compilation which cannot be applied in the IoTree program,
especially when sensing tasks requires different energy levels.

CleanCut [87] – another recent intermittent computing technique
– investigates to prevent a program from trapping in non-terminated
tasks. CleanCut continually compares the available energy and en-
ergy needed to perform a task in order to prevent one task from loop-
ing forever, a common issue of checkpoint-based and task-based
approaches. Establishing task boundaries [55] ensures data con-
sistency and forward progress, but lacks of awareness of multiple
energy levels within a task. Also, the CleanCut’s energy modeling
does not correspond to the actual energy requirement of each task.
Due to static code analyses, the developer must turn in the energy-
related parameters when porting to different hardware platforms.
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tion.

Consequently, it does not well-match the IoTree system since the
energy level varies at different sweeping frequencies while perform-
ing impedance profile measurements. In other application use cases,
the frequency set may alter corresponding to specific requirements,
influencing the accurateness of CleanCut’s energy modeling.

IoTree’s block-based approach and Coala [88] both aim to di-
vide over-fitted tasks into smaller sub-tasks, or blocks, to ensure
the executed code size fits well to residual energy. However, Coala
attempts to minimize the transitional overhead energy between tasks
while IoTree tries to preserve sensing results and transmitting data
state as the transition energy consumption is insignificant compared
to the required energy in sensing and transmitting tasks in IoTree use
cases. When dividing a task into blocks, each block must complete
a work portion (i.e., portion of sensing data, portion of transmit-
ting data). Thus, avoiding re-executing a code segment associated
with the same sensing or communication tasks is the primary goal
of the IoTree system. Moreover, Coala prevents data inconsistency
over coalesced tasks using the blend of Virtual Memory Manage-
ment (VMM) and Direct Memory Access (DMA), which cannot
be applied an unsupported DMA hardware platforms like IoTree.
In contrast, each block in the block-based approach shares the task
buffer data that is committed only when a block completes its execu-
tion. The buffer manager controls the read/write operations from a
block into the task buffer, ensuring data consistency when the execu-
tion flow transits from one block to another. Each block accesses the
task buffer (non-volatile memory) and only copies related data to
the volatile local buffer, and the volatile local buffer will be updated
to the task buffer after a completed block execution (Fig. 8).

Block-based Computing. We propose a blocked-based approach
to overcome the limitations mentioned above. The key idea is to
boost energy utilization by adaptively changing the amount of codes
to be executed before power failure, and to minimize overhead
memory by check-pointing only replicas of the system’s snapshots
(i.e., pointers). In particular, we divide the task into multiple blocks
whose sizes can be adaptively updated during run-time depending
on the energy availability. Fig. 7 illustrates an example of how block-
based approach works during run-time. A block-based program
comprises tasks, blocks, and tasks containing many blocks within
themselves. Blocks are built and assembled to form tasks. Thus,
the input and output buffers for each task are allocated in order to
create communication between the tasks. Note that any block in
the block-based program neither allows users to use non-volatile or
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Algorithm 1: Block Size Anticipation

Input :𝐸𝑎 := available energy in budget
tid := identification of the next task

Output :block_size := block size of next task
nblock := number of blocks of next task
𝐸𝑟 := remaining energy

1 function look_ahead(𝐸𝑎 , tid)

2 block_size, nblock← get_task_configuration(tid)
3 𝐸𝑡 ← estimate_energy(tid)
4 if 𝐸𝑎 < 𝐸𝑡 then

5 if 𝐸𝑡/𝐸𝑎 = ⌊𝐸𝑡/𝐸𝑎 ⌋ + 1 then

6 nblock← 𝐸𝑡/𝐸𝑎

7 else nblock← ⌊𝐸𝑡/𝐸𝑎 ⌋ + 1

8 block_size← 𝐸𝑡 /nblock
9 if nblock ̸= (get_number_block(tid)) then

10 𝐸𝑟 ← 𝐸𝑎 – nblock ·𝐸𝑜 – 𝐸𝑜

11 else 𝐸𝑟 ← 𝐸𝑎 – nblock ·𝐸𝑜
12 else 𝐸𝑟 ← 𝐸𝑎 − 𝐸𝑡
13 return block_size, nblock, 𝐸𝑟

global variables. There are two types of blocks: iterative and single
blocks. An iterative block is equivalent to a loop over a function
with different parameters (i.e., sweeping over different frequencies),
while a single block is equivalent to a code sequence (i.e., task
initialization or returning results). Still, both are atomic sequences
[55] meaning that the code outside a block cannot observe its effects.

IoTree computing system manages to obtain the most optimal
number of blocks for the tasks in terms of wasted energy. Specif-
ically, we build a sequential pipeline, including a theoretical opti-
mization in compile-time and an empirical optimization in run-time.
For the theoretical optimization stage (i.e., compiling time phase),
the hypothesized solution is the trivial solution based on the power
consumption ratio among three tasks computing from the machine
code distribution of each task on FRAM. Afterward, the hypothe-
sized solution is served as initial block numbers in the empirical
optimization stage, which only occurs when the system is deployed
(i.e., during its run-time phase). The empirical optimization stage
uses Alg. 1 as a configuration method to adjust the hypothesized
parameters to be a more precise solution (i.e., near-optimal block
size and the number of blocks) in the system’s run-time (Alg. 2).
This process returns the most optimal set-of-integer of block size
and the number of blocks

The approach is feasible if and only if (i) there is a finite set of

solutions for the number of blocks within a task and (ii) the algorithm
finding the optimal block size converges. If these two conditions
satisfy, the optimal block size and number of blocks (of the same
size) will be obtained. For (i), the number of blocks solution set
for a task cannot be infinite in practice since the size of one block
cannot subceed the overhead unit. Otherwise, the task is filled with
overhead units and cannot be executed. Additionally, by the well-
ordering principle [89], we can confirm that there always exists a
set-of-integer solution in the finite set that makes the system waste
the least energy in our particular case. For (ii), we observe that Alg.
2 always returns solutions that reach the optimal solution in run-time
for multiple test cases, including varying the capacitor size and task
sizes. From test cases, the convergence of wasted energy in a power

Algorithm 2: Adaptive Block Size using Anticipation

Input: 𝐸𝑐 := buffer energy in capacitor
Output: (𝑛1, 𝑛2,..., 𝑛𝑖 ) := Tasks’ optimal configuration

1 (𝑇1,𝑇2, ...,𝑇𝑖 )← compute_task_execution_time()
2 (𝐸1, 𝐸2, ...,𝑇𝑖 )← estimate_task_energy(𝑇1,𝑇2, ...,𝑇𝑖 )
3 𝐸𝑎 ← 𝐸𝑐

4 while 𝐸𝑎 > 0 do

5 tid← get_next_task_id()
6 block_size, 𝑛𝑡𝑖𝑑 , 𝐸𝑟 ← look_ahead(𝐸𝑎 , tid)
7 configure_task(tid, nblock, block_size)
8 execute_task(tid)
9 𝐸𝑎 ← 𝐸𝑟

cycle, 𝐸(𝑖)𝑤 , can be modeled in terms of the residual energy of the

current power cycle, 𝐸(𝑖)𝑟 , the required energy for task " 𝑗" in current

power cycle, 𝐸(𝑖)𝑗 , and the capacitor size, 𝐸𝑐 , as follows:

lim
𝑖→∞

(

∑︁

𝐸
(𝑖)
𝑤

/

∑︁

𝐸𝑐

)

= const, where 𝐸(𝑖)
𝑤 =

(

𝐸
(𝑖)
𝑟 −

𝐸
(𝑖)
𝑗

⌊𝐸(𝑖)
𝑗
/𝐸

(𝑖)
𝑟 ⌋+1

)

Hence, (i) the finite solution set and (ii) the improved solution ob-

tained from the algorithm during run-time are verified, we conclude
that IoTree can find the optimal solution to minimize wasted energy.
This approach’s energy consumption will be evaluated in Sec. 8.2.

Forward Progress & Data Consistency. Block-based approach
maintains forward progress by saving the task pointer whenever
the system jumps into the task and saves the current block pointer
of that task. To maintain data consistency, we introduce the buffer
manager, preventing multiple writes into output buffers when a task
resumes from the same block multiple times. Fig. 8 (a) shows a
typical idempotent violation, which produces two different results
when executing the same code segment. Fig.8 (b) illustrates how
buffer manager effectively controls the "write" and "skip write" data,
avoiding data inconsistency.

Block-based Library Implementation. We implement the block-
based run-time library using the C programming language, the ideal
language in embedded system development. The library aims to give
users a set of Application Programming Interface (API) to develop
an intermittent application effortlessly. These APIs include setting up
tasks and blocks. The user initially needs to create tasks by using cre-

ate_task(name, &task_id), connect them by set_transition(task_id1,

task_id2), and set input-output buffers by set_buffer(task_id, buffer,

buffer_type) for each task. Before setting buffer for a task, we need
to allocate memory for that buffer by alloc_buffer(size). Non-volatile
memory is the crucial component to save a program state before
a power failure so that the application can continue from that fail-
ure point. Creating buffers with help from the non-volatile memory
manager provided by the run-time library enables programmers to
write an intermittent program efficiently. The library allows them
to focus on their algorithms and let the run-time library manage
all global non-volatile variables, which are potential causes of data
inconsistency. Next, the user must create block handlers to manage
block control and set these block handlers as well as the number of
blocks for each task by using set_block_handler(task_id, block_func,

number_blocks). The system will execute the setup code only once
at the first power cycle, then run as scheduled unless programmers
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Idle Sensing Computing Transmitting

Power (mW) 1 62 6 245
Duration (ms) 0.3 170 80 150

Table 2: IoTree’s power consumption & typical execution time

want some changes at the run-time, such as re-wiring task transitions
for special cases.

Block-based Implementation in IoTree system. IoTree includes
three main tasks: sensing, data compression, and communication;
each task is adaptively divided into blocks using the block-based
run-time library. The power consumption and typical execution time
of each task are shown in Table 2. A task must be accomplished
before the system proceeds to the next task, and each of them reads
the input from the previous task and produces the output for the
subsequent one.

Due to the imperfection of electronic components, even the opera-
tional power of a task fluctuate over time, leading to many difficulties
in obtaining optimal block size and number of block. Considering
the sensing task as an example, our system captures the capacitance
response created by sweeping 16 frequencies signals. Fig. 10 illus-
trates the energy consumed at frequency 1kHz, 10kHz, and 100kHz.
The energy consumes by each frequency is different, and frequent
power failures make it extremely difficult for the system to identify
the best block size and number of blocks. Fortunately, the variation
of the consumed power of each task is predictable. If the system
obtains sufficient knowledge of how each task consumes power dur-
ing its run-time, it will be able to identify the best block size and
block number. The starting point of the energy ratio between tasks
and the storage capacitor is provided by the user/programmer during
compile time. Block size and number of blocks are then obtained
automatically during the installation phase of the system.

7 SYSTEM IMPLEMENTATION

We design, fabricate, and implement IoTree system using COTS
materials and electronic components as illustrated in Fig. 9. In the
following subsections, we describe the 3D model, PCB, implant
process, and sensor calibration. The process of design and fabricate
the impedance sensor is described in Sec. 4.1. We also develop a soft-
ware running on an MS Windows computer, equipped with a LoRa
receiver, to continuously receive the signals from the IoTree nodes.
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Figure 10: Sweeping frequency power consumption: 1 KHz, 10

KHz, and 100 KHz.

3D Model Design & Fabrication. IoTree 3D prototype is designed
using SOLIDWORKS. We choose 𝜙24 DC motor and wind turbine
(𝜙80) for the energy harvester. We design a wind indicator that
supports 180-degree freedom of rotation to steer the turbine towards
the direction of the wind [14]. A hanger is designed at one end of the
prototype to help attaching the device to the body of the tree. The
vertical pole holding the turbine is a tube that allows the electrical
wires to connect the motor and the circuit. This structure will help to
avoid blockage caused by twisted wires around the prototype when
the wind indicator rotates in one direction for certain cycles. A small
bearing is used to reduce friction when the wind indicator rotates
around the vertical axis. The whole system, including the circuit,
weights 115.85 grams with the size of 145 mm × 170 mm.

PCB Design & Implementation. We design and fabricate IoTree’s
circuit as shown in Fig. 9. The circuit has a size of 31.5 mm × 65
mm, weights 4 grams, includes two layers with 0.8mm thickness.
MSP430FR2433 (126 𝜇𝐴/MHz, 16KB FRAM, 4KB SRAM) is the
central control unit of IoTree’s circuit. To harvest energy at the low
wind speed (2 m/s, 1.5 V), we use BQ25570, which supports a power
boost charger to charge a storage capacitor up to 4.2 V from the lower
input voltage. The energy harvester also allows the maximum power
input of 510 mW that is able to sustain for maximum wind speed (12
m/s, 13.7 voltage, 12 mA, 164.3 mW) as the experiment depicted
in Fig. 6. MCU communicates with impedance analyzer circuit via
I2C and with RF components via UART. We use programmable
power switch integrated circuits (TPS22919DCKT IC) to turn on or
turn off different circuit components according to the requirement
of the current task to force the component to go to sleep if they are
not performing any task. The amount of energy buffer is calculated
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Figure 11: In-lab experiments with Nitrogen and Potassium:

impedance profiles for different level of nutrients.

by 𝐸𝑐 = (1/2) · 𝐶 · (𝑉 2
𝑚𝑎𝑥 −𝑉 2

𝑚𝑖𝑛), where 𝑉𝑚𝑎𝑥 is the upper bound
voltage to trigger starting of the circuit and 𝑉𝑚𝑖𝑛 is the lower bound
voltage where the circuit turns off.

Implanting Sensors into The Tree’s Xylem. We first calibrate
the sensors after they are manufactured to obtain the calibration
constant since every pair of sensors might have a different distance
due to the manufacturing imperfection. We hence drill two tiny
holes on the tree with a depth of three millimeters, then we put a
portion of mixture 500 mg catalase and 50 ml conductive gel into
these holes to avoid the reduction in conductivity level [90]. The
catalase prevents the defense mechanism of the tree, which will lead
to compartmentalization and reduced sensor accuracy [91] while
conductive gel increases conductivity and moisture between two
electrodes and tree xylem [92]. We place two sensor electrodes into
two holes and shield these holes with adhesive tape to make sure
that no air can come into the holes.

Sensors Calibration. We develop a compact model to map the
measured impedance profile to the corresponding water and nutrient
levels. For each measurement, we obtain an impedance profile vector
of 𝑘 + 1 elements, ®𝑥𝑟𝑎𝑤 = (1, 𝑥1, 𝑥2, ..., 𝑥𝑘 ); each element from 𝑥1 to
𝑥𝑘 respectively represents for the impedance being measured at each
frequency, ranging from 𝑓1 to 𝑓𝑘 (𝑘 = 16 in our implementation).
Depending on each input impedance profile ®𝑥𝑟𝑎𝑤 , the corresponding
predicted nutrient level, 𝑦, will be calculated as follows:

𝑦 =
𝑘

∑︁

𝑖=0

𝛽𝑖𝑥𝑖 +
𝑘

∑︁

𝑖 ̸=𝑗 ̸=0
𝛽𝑖, 𝑗𝑥𝑖𝑥 𝑗 +

𝑘
∑︁

𝑖=1

𝛽𝑖,𝑖𝑥
2
𝑖 (1)

Leveraging Eq. 1, our data set could be designed into the matrix
form as: ®𝑦 = X ®𝛽+®𝜀, where X is a matrix composing of𝑛 vectors in the
form of ®𝑥 (with ®𝑥 = (1, 𝑥1, .., 𝑥𝑘 , 𝑥1𝑥2, 𝑥1𝑥3, .., 𝑥𝑘−1𝑥𝑘 , 𝑥21 , 𝑥

2
2 , .., 𝑥

2
𝑘
)),

®𝑦 is the vector of nutrient levels corresponding to the impedance
profiles, ®𝛽 = (𝛽0, 𝛽1, .., 𝛽𝑘 , 𝛽1,2, 𝛽1,3, .., 𝛽𝑘−1,𝑘 , 𝛽1,1, 𝛽2,2, .., 𝛽𝑘,𝑘 )⊺ , and
®𝜀 = (𝜀1, 𝜀2, .., 𝜀𝑛)

⊺ is the residual value vector for 𝑛 measurements.
To seek out the most suitable ®𝛽, we use the Iteratively Reweighted
Least Squares (IRLS) algorithm that allows us to update ®𝛽 iteratively.
By establishing an objective function in 𝐿𝑝 spaces, Lebesgue spaces,
for the quadratic regression as follows:

argmin ®𝛽 | | ®𝑦 − X ®𝛽 | |𝑝= argmin ®𝛽

𝑛
∑︁

𝑖=1

|𝑦𝑖 − X𝑖𝛽 |𝑝 (2)

where argmin ®𝛽 is the minimizer returning coefficient vector, ®𝛽, at
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Figure 12: (a) The accuracies of sensing 10 levels of Nitrogen

(𝑁𝐻3) at 10 g/L resolution, and (b) The accuracies of sensing 10

levels of Potassium (𝐾2𝑂) at 10 g/L resolution.

which the polynomial is minimum, | |𝑥 | |𝑝 is defined by (
∑𝑛
𝑖=1 |𝑥𝑛 |𝑝 )1/𝑝

(𝑝 ∈ R | 𝑝 ≥ 1), and X𝑖 is the 𝑖𝑡ℎ row of X.
To solve Eq. 2, we get initial values for ®𝛽 and W. The initial
®𝛽, ®𝛽 (0), is the resulting ®𝛽 from Weighted Least Squares algorithm
running on our dataset. The initial diagonal weight matrix W, W(0),
is assumed as the identity matrix I𝑛 . In the loop, ®𝛽 and W will be

automatically updated by: ®𝛽 (𝑘+1) = argmin ®𝛽
∑𝑛
𝑖=1𝑤

(𝑘)
𝑖 |𝑦𝑖 − X𝑖𝛽 |2=

(X⊺W(𝑘)X)−1(X⊺W(𝑘) ®𝑦) and W
(𝑘)
𝑖,𝑖 = |𝑦𝑖 − X𝑖𝛽

(𝑘) |𝑝−2. Also, the

weighted least-squares error is re-calculated as: 𝑒 =
∑𝑛
𝑖=1𝑤

(𝑘)
𝑖 (𝑦𝑖 −

𝑦𝑖 )
2. The loop stops when the error converges. Hence, we obtain the

most suitable ®𝛽 with the minimum ®𝜀. Note that the developed model
is designed for a single substance (nitrogen or potassium); a more
sophisticated learning algorithm is needed to estimate the nutrient
levels when multiple nutrients are fertilized simultaneously.

8 PERFORMANCE EVALUATION

In this section, we conduct in-lab and in-the-wild experiments to
validate the sensitivity and feasibility of IoTree. The experiments
are designed to answer the following questions: (1) Is it possible

to monitor different water and nutrient levels using the developed

sensors?; (2) What is the accuracy of the sensing technique?; (3) Is it

possible to monitor how the tree react to the input water and fertilizer

in real-time?; (4) Can the system operate completely battery-free?;
(5) Is the implemented system reliable for long-term deployment?

8.1 Indoor Experiments

In Situ Experiments. We first validate the accuracy of monitoring
(𝑁𝐻3 and 𝐾2𝑂) nutrient levels through in-lab experiments by pro-
ducing different levels of concentrations for each substance ranging
from 10 g/L to 100 g/L (i.e., amount of substance over the mixed
water). At each level, the measurements are repeated 100 times; 70
measurements are used to build the model (finding ®𝛽 as in Eq. 2),
and 30 measurements for testing our model as in Eq. 1.

Fig. 11 shows the measured impedance corresponding to 10 levels
of 𝑁𝐻3 and 𝐾2𝑂 at 10 g/L resolution with sweeping frequencies
ranging from 10 kHz to 100 kHz, and the 10-level impedance profiles

360



ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Tuan Dang et al.

Put 1g Potassium 

and 100ml water

0 10 20 30 40 50 600 10 20 30 40 50 60 70

(c) Potassium(b) Nitrogen

HourHour

700 10 20 30 40 50 60 70
Hour

Put 100ml water
Put 1g Nitrogen 

and 100ml water

C
o

n
d

u
c

ti
v

it
y

 (
1

/ 
)

2.05

2.35

2.50

2.08

2.16

2.24

2.40

2.32

(a) Water

N
u

trie
n

t le
v

e
l (g

/L
)11

20

17

14

N
u

trie
n

t le
v

e
l (g

/L
)

10 -610 -6 10 -6

Sufficient water
Lack of water

Sufficient Nitrogen
Under/Over Nitrogen

Sufficient Potassium
Under/Over Potassium

2.00 8

20

16

122.20

2.05

2.35

2.50

2.20

Figure 13: Water and nutrient sensing on living trees.
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comparison among three approaches.

are also visually distinguishable. Fig. 12 illustrates that processing
with the filtered data gives us higher accuracy compared to process-
ing with the raw data: achieving the accuracy of 91.08% for 10 levels
of concentration of 𝑁𝐻3 (from 84.34% with the non-filtered 𝑁𝐻3

data) and the accuracy of 90.51% for 10 levels of concentration of
𝐾2𝑂 (from 75.33% with the non-filtered 𝐾2𝑂 data). This confirms
the reliability of the developed sensors and sensing circuit.

In Vivo Experiments. We deploy IoTree on Burkwood Viburnum
and White Bird trees. We first put 100ml water into the soil and
observe the measured impedance in the tree body over time. The
measured impedance can be shown in Fig. 13 (a). As can be seen in
the figure, the tree reaction to the input water can be clearly captured
in real-time. In another experiment, we input 10 g/L of 𝑁𝐻3 into
the tree’s soil and observe the tree’s reaction over time. Note that
we did not fertilize the tree two weeks before this experiment. The
tree’s behaviors can be observed as in Fig. 13 (b). The conductivity
increase after the tree is fertilized. This indicates that the sensor is
sensitive to the nutrient levels change inside the tree body. At the
50th hour, when the conductivity reduces, we put another 10 g/L
of 𝑁𝐻3 into the soil. The conductivity then increases to the normal
range from 2.22x10−6 Ω−1 to 2.37x10−6 Ω−1 corresponding from 14
g/L to 18 g/L. We then follow the same procedure with 𝐾2𝑂 nutrient,
and similar reactions from the tree are observed as illustrated in
Fig. 13 (c). The normal range from 2.20x10−6 Ω−1 to 2.32x10−6

Ω−1 corresponding from 12 g/L to 15 g/L. We use a fan to generate
artificial wind for these experiments. These confirm the feasibility
and reliability of the developed sensors and sensing system. In the
next experiment, we present our observation in farm settings.
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Figure 15: Average number of data transmissions of three proto-

types deploying on three grapevine trees over a month.

8.2 On the Farm Experiments

Our deployment includes two components: IoTree prototypes and
a base station, as shown in Fig. 17. We attach three prototypes on
three grapevine trees on the field, while a base station, including a
laptop interfacing with the LoRa receiver, is located at a distance
of 0.8 km from the farm. Fig. 15 shows the average number of data
transmissions of three prototypes we obtained every day. The number
of measures varies each day depending on the weather condition.
The total number of sensed measurements ranges from 21 to 1787,
which is sufficient for our application. In particular, sensing data in
Fig. 16 show that grapevines uptake nutrients during the day and
consume nutrients at night. These measured data are matched with
nutrient uptake behaviors described in literature [26]. Specifically,
when grapevines uptake nutrients, the conductivity increases from
2.23x10−6 Ω−1 to 2.27x10−6 Ω−1, corresponding from 14.4 g/L
to 16 g/L for Nitrogen. According to prior work [93], the levels
of Nitrogen fluctuate between normal range. We will continue to
observe the measured data behaviors and report detailed results of
full-season monitoring in future works.

Computing Performance. We compare the block-based approach
with checkpoint and tasked-based approaches in terms of energy
utilization, computation overhead, and memory utilization on the
same hardware platform by performing the best-effort implemen-
tation of checkpoint approach [55] and task-based approach [57].
The source code for other relevant techniques [58, 86, 87]) are also
unavailable. While Coala [88] provides open source implementation,
the hardware incompatibility introduces issues in replicating the
work. Regarding energy utilization, the block-based approach has
similar wasted energy to the checkpoint approach but less wasted
energy than the task-based approach. If the buffer energy is less than
a task’s required energy, the task-based approach likely wastes all
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Figure 16: Sensing data in the wild deployment with different wind conditions.

power in the buffer energy, as shown in Fig. 14 (a). In the average
case, our approach outperforms the task-based approach up to 4x.
Our approach has similar performance to the task-based approach in
terms of overhead while 5x improved compared to the checkpoint-
based approach. As for memory utilization, our approach requires
less memory than checkpoint up to 2x and has a similar memory
footprint to the task-based approach as shown in Fig. 14 (b). We
also conduct experiments with different capacitor sizes (i.e., 3 mF,
6 mF, 10 mF, and 15 mF) and let 𝑉𝑚𝑎𝑥 be 4.2 V and 𝑉𝑚𝑖𝑛 be 2.9 V
while the required energy for three tasks is approximately 11 mJ,
0.5 mJ, and 37 mJ, respectively. The IoTree system executes stably
for all those configurations and obtains optimal configuration after
approximately ten power cycles.

System Reliability. We deploy IoTree’s prototype on grapevine trees
farm for 30 days with an average number of measurements is 558.
The prototypes perform reliably under multiple weather conditions,
including windy, rainy, and sunny as illustrated in Fig. 15.

Communication Performance. We evaluate the performance and
reliability of IoTree ’s long-range communication on the field. The
base station is placed at a fixed position, while IoTree wearable
device is moved to different locations ranging from 0.3 km to 1.8 km
from the base station. The system continuously sends data towards
the base station. As illustrated Fig. 18, the communication works
reliably up to 1.8 km with non-light-sight condition.

9 LESSONS LEARNED

In this section, we provide some of the insights and lessons learned
from our experiences in designing, fabricating, deploying, and eval-
uating IoTree prototypes in the wild.

Lesson 1. Scheduling or sleeping is not the most optimal strategy

as wind energy is unpredictable.

Since the capacitor cannot hold the energy for an extended period due
to leakage caused by the manufacturing imperfection, any operation
should be performed as soon as the system accumulates enough
energy by buffer size. Furthermore, the sensing system may miss
important events while sleeping [85]. Additionally, the instant energy
is entirely wasted if there is significant wind energy and the buffer is
already full during the sleeping time.

Lesson 2. Choosing the capacitor size that perfectly fits the entire

program is arduous in practice.

The required energy for one cycle of the program, including sensing,
data compression, and long-range communication, is impractical.
This requires the system to measure the available energy at high

precision. Such hardware is expensive and complex to control under
intermittent power. Configuring the firmware to perfectly fit the size
of capacitor leaves the programmers a difficult task when the stored
energy in each power cycle might be different among each other due
to the hardware imperfection. Additionally, the program may have
updates and changes over deployment time; therefore, seeking out
the best fit capacitor size is not a scalable method.

Lesson 3. Internal resistance of capacitors are crucial in under-

standing how voltage drop affects on the charging behavior.

Regardless the capacitor size, we notice that internal resistance of
capacitors are important in real-world deployment. Since the wind
speed outdoor varies under multiple circumstances, the capacitor
is not charged in most of the time if the internal resistance of the
capacitor is high, eventually resulting in a voltage drop and an
infinity loop of charging.

Lesson 4. Selecting big or small capacitors affects the responding

time of the entire system since different capacitors need different

times to be buffered.

The bigger capacitors we use, the later sensing events we capture
since the bigger capacitors require more time to charge. On the
other hand, if we choose smaller capacitors, the system will respond
quickly to the events but make a task more fine-grained, resulting in
a block that does not cover at least one frequency in the sensing task.
Due to the system’s correlated behavior and responding time, the
designing strategy in choosing the capacitor is needed; hence, we
prefer selecting a capacitor whose energy is from one third to two
third of the total required energy to run all tasks.

10 RELATED WORK

Nutrient Monitoring Technique. Measuring the ion quantities di-
rectly is the most accurate way to monitor nutrients inside the plants.
Ion-selective electrodes are widely used in commercialized prod-
ucts [94, 95], and in literature [96, 97] to measure temperature, pH,
sodium chloride, ammonium phosphatides, electrical conductivity,
dissolved oxygen from soil or the hydroponic solution supplied to
trees. However, these systems require humans to operate and are
highly expensive, making it challenging to be used on an individual
tree. Other approaches such as [98, 99] employ ultra-violet spec-
tral absorption and wet chemical colorimetric reaction to measure
individual ions such as ammonium, nitrate, and phosphate in the
hydroponic solution with very high accuracy and fast response time.
Nevertheless, these systems are costly (over $10k, [100]). Thus, it
is impossible to scale these systems to monitor the nutrient of the
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Figure 17: IoTree’s deployment setup.

individual tree on a large scale. Another approach is to infer the nu-
trient level inside the tree base on the leaves’ color [101]. However,
this approach is inaccurate due to the lack of information retrieving
directly from the inside of the trees and inapplicable during the de-
foliation period (when the tree has no leaves). IoTree, on the other
hand, uses the novel biocompatible and implantable sensors that can
be injected into the trees to measure the water and ion levels using
the impedance sweeping technique.

Agricultural Sensing Platform. Automatic irrigation systems based
on soil moisture [102], IoT-based systems based on sensors at-
tached [103, 104], IoT-based greenhouse monitoring systems [59]
are widely adopted in both literature and practice to improve crop
yield and water efficiency effectively. However, they have several
limitations, such as (1) the dependency on a power supply station and
(2) invasive sensors that can harm trees. The common way to monitor
nutrient deficiencies is based on the morphology and color of the
leaves [105], which is impossible during the dormant stage. Chai et

al. [106] designed the biocompatible senor for sap flow and water
distribution inside the tree. Nevertheless, this sensor is not suitable
for trees with large barks. A self-powered sensor for agriculture use
was developed by Lan et al. [107]; however, this sensor is capable of
Bluetooth communication only, which is impractical in farm settings
since Bluetooth has a limited range of communications. To sum up,
there is no previous continuous tree’s health monitoring platform
that integrates biocompatible sensors, battery-free design, and inter-
mittent computing technique while being accurate, tree-wearable,
reliable, and extendable to large-scale deployment.

11 DISCUSSION & FUTURE WORKS

Recycling Feasibility. As far as we know about recycling, IoTree can
be recycled, one after another. Indeed, the IoTree prototype does
not encounter any hardware or software issues after one-month de-
ployment in various weather conditions, including sunny, rainy, and
windy days. From our experiences on installing prototypes, we also
learn that the prototype can be uninstalled from one tree and installed
on another with minimal effort and without any maintenance.

Limitations. While the preliminary results are promising, the cur-
rent implementation of IoTree has the following limitations. The
sensor and sensing component is only sensitive to single substance
measurement, either water or one type of fertilizer. Second, the cur-
rent system only works with trees with a body size larger than 0.5
cm of radius. Third, the system is only validated with a small set
of trees and one-month experiments. Last but not least, the system
has only been validated at one geographical location. The tree-soil
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relationship is still an unexplored research problem since we reserve
to explore a machine learning model to extract this relationship after
substantial data are collected.

Future Works. We had only deployed IoTree prototypes on grapevine
trees as a proof of concept as they are the only agricultural plants
that are accessible within surrounding areas. However, we believe
that IoTree would perform reliably on any kind of trees, we plan to
continue optimizing the sensing system to make it more practical for
long-term, full-season deployment on multiple trees at multiple geo-
graphical areas. In particular, we will develop an ion-selective and
biocompatible sensing array to allow us to measure multiple nutrients
simultaneously. Ion-selective membranes [108–112] and Organic
Electrochemical Transistor (OECT) [113–116] are two promising
approaches. We also plan to test the system with more types of trees
(e.g., corn, sunflower, rice, and others). We will deploy the system
on the smaller body size tree. We will look at multiple geographical
locations to confirm the sensitivity and usability of the proposed so-
lution. We will further optimize the block-based computing approach
and apply it to other wind-based battery-free systems. While tree
soil relationship has been explored in the past [117–120], we will
explore this complex relationship by analyzing the data collected
from the tree and soil simultaneously.

12 CONCLUSIONS

This paper presents IoTree, a battery-free wearable system with bio-
compatible and implantable sensors for a living tree to continuously
monitor nutrient uptake. The system includes a biocompatible fiber-
based sensor implanted inside the xylem of a living tree. The sensor
is able to monitor 5 and 10 levels of 𝑁𝐻3 and 𝐾2𝑂 nutrients with
the accuracy of 91.08% and 90.51%, respectively, with in-lab ex-
periments. With real-world experiments, the estimated nutrient and
water level can be used to indicate normal, lack of water/nutrient,
and over water/nutrient in real-time. The sensed data is wirelessly
reported to a base station at kilometers of distance away. The entire
system is powered by wind energy. To cope with the unpredictability
of wind energy, we implement a block-based computing method to
allow the system to fully utilize the energy with minimum memory
overheads. IoTree is evaluated through in-lab and real-world deploy-
ment for 30 days. The experimental results show that IoTree is able
to provide sufficient measurements every day. The system reports
558 measurements on average a day with a distance of up to 1.8
kilometers without requiring any batteries or maintenance. We in-
clude a real-time demo of the developed system [14]. The 3D model,
hardware design, and software will be made publicly available to
encourage adoption and reproducibility.
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