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ABSTRACT
This is a position paper that discusses the challenges of emerging
new sensing modalities for both device-free and wearable sensing
systems, as well as opportunities lying in the combination of them
across multiple information scales. With the development of the
Internet of Things (IoT), many devices with sensing-ability have
entered people’s life. These systems mainly fall into two categories:
wearables and infrastructure sensing (device-free). In this paper,
we �rst brie�y summarize the state-of-the-art sensing modalities
of these two categories, then we discuss the challenges faced by
them. We envision a future of IoT human sensing systems that
achieves seamless sensing across multiple scales through collabora-
tive information inference by both categories of modalities. Finally,
we discuss the opportunities to expand the boundaries of sensing
modalities that lie in their collaborative adaptation.

CCS CONCEPTS
• Human-centered computing! Ambient intelligence;
Mobile devices.

KEYWORDS
Device-free sensing, wearable sensing, collaborative sensing

ACM Reference Format:
Shijia Pan and Phuc Nguyen. 2020. Opportunities in the Cross-Scale Collab-
orative Human Sensing of ‘Developing’ Device-Free and Wearable Systems
. In The 2nd ACM Workshop on Device-Free Human Sensing (DFHS’20 ), No-
vember 15, 2020, Virtual Event, Japan. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3427772.3429394

1 INTRODUCTION
With the development of the Internet of Things (IoT), many devices
with sensing-ability entered people’s life. According to Statista [1],
the connected devices are projected to reach 21.5 billion units world-
wide by 2025. The research on sensor networks dated back to the
70s focused on three key aspects: sensing, communication, and com-
puting [2]. With the development in these aspects, many human-
centered smart applications are enabled by reliable communication
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Figure 1: Collaborative wearable and device-free sensing.

over di�erent range scales, the signi�cant increase in computa-
tional power and decrease in size, various new sensing modalities
that are less intrusive. Especially in recent years, the evolution
of newly developed sensing modalities falls into two categories:
on-body (wearable, mobile) and device-free (infrastructure) sensing.
They have been designed to capture information in di�erent scales
including and not limited to physical and physiological scales.

Given the broad conversation around on-body (wearable) and
infrastructure (device-free) human sensing, let us begin by de�ning
the scope of this paper and some of the terms used. In this paper, we
focus on the innovation of non-obtrusive ‘developing’ sensing tech-
nologies in IoT systems. We refer to device-free sensing as a wide
range of static or semi-static sensors deployed onto infrastructure
and do not move during their data acquisition - homes, o�ces, cars,
shops, schools, airplanes, spaceship, and more. These device-free
sensors typically have the ability to unobtrusively sense human
physical activities including presence, breathing, heart-rate, walk-
ing, talking, running, and so on. We refer to an on-body sensor as a
wearable device to monitor human physiological and emotional
stages including emotion, sleeping, driving, eating, health condi-
tion, and so on. On-body sensors carried by a human can come and
go from the environment over short or long-time scales.
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Figure 2: Multi-scale IoT sensing systems face di�erent spa-
tiotemporal requirements.

16



DFHS’20 , November 15, 2020, Virtual Event, Japan Pan, et al.

Device-free human sensing is often applied in the long-term
monitoring where the devices often require a reliable power sup-
ply, or in the scenario where the target user may not suitable for
wearing/carrying devices on-body. For example, in-home older
adults’ daily care, or long-term patient physical condition monitor-
ing is typical to target applications for device-free human sensing
systems. The challenges faced by device-free human sensing are
mainly from the complexity of the deployment environment, es-
pecially for various newly explored indirect information inference
approaches. For example, structural vibration-based human sensing
is signi�cantly impacted by the structural characteristic itself [3].
On the other hand, the newly developing wearables can capture
high-resolution information, e.g., limb movement, muscle move-
ment, EEG, EOG, EMG, heart-rate variability, blood oxygen signals,
in a non-obtrusive way. The key challenges in wearable sensing
are the extremely low-amplitude, frequency-overlapped, location-
dependent, user-dependent signals captured by existing low-energy
budget sensing technology. As an example, while human brain sig-
nal, muscle signal, and eye movement signal are important for
enabling advanced health-care monitoring, human-computer inter-
action applications, they are often at D+ /<+ level and dominated
by human motion artifacts.

We see opportunities in the complementary characteristics of
device-free and wearable sensors (Fig. 1). We present potential
research directions that allow device-free sensing to support wear-
able sensing and vice versa. In particular, although the device-free
and wearable-based human sensing systems often have di�erent
spatiotemporal resolutions, they demonstrate complementary char-
acteristics and cross-scale (Fig. 2) information acquisition ability.
We also discuss sensing density and coverage problems in device-
free sensing and describe how wearable devices can potentially
help. Last but not least, we discuss how the co-located device-free
and wearable sensors can collaboratively achieve high-quality data
acquisition and �ne-grained information inference.

2 STATE-OF-THE-ART SENSING MODALITIES
In this Section, we brie�y summarize the state-of-the-art sensing
modalities of both device-free and wearable approaches.

2.1 Device-free human sensing
Various device-free human sensing modalities have been explored,
such as vision [4, 5], acoustic [6, 7], vibration [3, 8–11], light [12, 13],
WiFi [14, 15], mmWave [16–19], RFID [20, 21], etc. These sensing
modalities acquire human information without requiring the target
human subject to wear or to carry any devices. These state-of-the-
art sensing modalities have been used to acquire the information
include but not limited to identity [9, 17], location [3, 22], activ-
ity [10, 18], physical status such as heart rate variability [16, 23],
sleep stages [24], gait parameters [11], etc. We summarized their
advantages and disadvantages in Table 1, and these characteristics
determined their target or suitable applications.

2.2 Wearable-based human sensing
On-body sensors that are used to monitor brain signal (EEG), mus-
cle signal (EMG), eye signal (EOG), heart-rate variability (HRV),
GSR (galvanic skin response), blood pressure, breathing behaviors,
activities, and so on have tremendous value in inferring the user’s

health, mental, physiological, and physical states. The key advan-
tage of wearable devices is their direct contact with human skin
allowing them to capture extremely low-amplitude signals from
the human body. For example, using just facial muscle signals (i.e.,
electromyography (EMG)) alone, one can infer the stress level of a
user [25, 26] and the eating habit and the type of food consumed by
the user [27–29]. When combining these EMG signals with brain
signals (i.e., electroencephalogram (EEG)), one can further under-
stand the user’s emotional states[30, 31], his pain [32] and su�ering
level [33], or sedation level during surgery [34]. The key disadvan-
tage of wearable sensors is its low spatial resolution. Due to its
limited knowledge about the environmental condition, the device
may require re-calibration every time the experiment is conducted
at a new location.

3 CHALLENGES
IoT sensing systems have been designed targeting applications
of di�erent scales as shown in Figure 2. These applications have
di�erent spatiotemporal requirement and challenges.

3.1 (C1) Challenges for sensing data from
‘developing’ modalities

The major challenges for these two categories of sensing data are
twofold 1) low signal to noise ratio (SNR) due to the indirect infer-
ence nature of the modalities, 2) various data distribution changes
from human and environment.

3.1.1 (C1.1) Low SNR. For indirect device-free sensing modalities,
they are often considered to be more acceptable in terms of the per-
ceived privacy of the users compared to ‘developed’ modalities such
as computer vision. Due to their indirect inference natural, these
systems are often prone to ambient noises and hence have limited
ability to acquire high-resolution information (e.g., physiological
level). Furthermore, because of this, these systems’ installation and
maintenance are sensitive to the ambient environments and hard-
ware con�guration, which makes the procedure labor intensive.
While recent scholarly publications as well as emerging wear-
able companies such as Emotiv [35], NeuroSky MindWave [36],
BrainLink Pro [37], Muse [38], Kokoon [39], Versus [40], Neuroon
Open [41], Naptime [42], etc. hold great hopes for the future of
wearable sensing, there are still many challenges to be overcome.
For example, heavy noises created by motion and coupled from the

Table 1: Device-free sensing modalities comparison.

Modality Pros Cons

vision accurate need light-of-sight (LoS)
high resolution privacy concerns

acoustic accurate prone to ambient noise
does not require LoS privacy concerns

light non-intrusive limited resolution

vibration non-intrusive sensitive to structure
does not require LoS limited resolution

mmWave high resolution impacted by multi-path
does not require LoS impacted by metal

WiFi non-intrusive sensitive to
does not require LoS environment change
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environment in daily use is the long-standing challenge limiting
the practical uses of wearable bio-signal sensing systems, as it is
di�cult to ensure high �delity signals.

3.1.2 (C1.1) High variation. Since the indirect device-free sensing
modalities infer the human information from their interaction with
the environment, the data distribution could signi�cantly change
over di�erent environment [3] and person’s physiological con-
ditions [9]. As for wearables, the signals collected by wearables
are often weak and frequency-overlapped. For example, human
physiological signals are often at D+ /<+ level and have overlap-
ping frequency - brain signal (EEG: 1-15 Hz), muscle signal (EMG:
�50Hz), eye movement signals (EOG: 0-50Hz). Signals captured
from di�erent users are di�erent due to the dynamic of the human
biological and physiological structure [43]. Designing universal
solutions that work across environments and users is, therefore,
extremely challenging.

3.2 (C2) Spatiotemporal coverage v.s. resolution
There is a trade-o� between the spatiotemporal coverage and reso-
lution for both categories of the systems. Since device-free sensing
systems are often static or semi-static and have limited sensing
range – e.g. at a room level – they can only capture human in-
formation while the target is in the range. This indicates a high
spatial resolution but limited temporal coverage in terms of sensing.
Such temporal limitation doesn’t exist in wearable sensing since
the devices are carried by a person from place to place. This en-
sures a high temporal coverage but a low spatial resolution as the
wearables signal does not re�ect the location characteristics. 1

Indeed, we anticipate that new wearable devices and device-free
sensors need to be suited for the hardware, software limitations
of each system, to be connected to reliable cloud services, to be
con�gured to collaboratively exchange information among one
another. For example, distributed device-free sensing information
- those associated with a speci�c wearer - can be aggregated to
build a reliable, large-scale, and real-time infrastructure sensing
map. However, realizing that idea is di�cult due to the following
challenges: (1) there is no reliable architecture network protocol
that connects wearable and device-free sensors at a large-scale
(e.g., city-level); (2) wearable devices have limited computational
resource and power, designing a reliable solution to connect them
to a large number of device-free sensors is challenging; (3) the
overheads and bene�ts of utilizing wearable devices to enhance
device-free sensing temporal coverage and utilizing device free
sensing to enhance wearables spatial resolution are little known.

3.3 (C3) Dataset of ‘developing’ new modalities
The ‘developing’ sensing modalities is often limited by datasets,
especially for those indirect sensing modalities with data of high
distribution variation and low signal strength. For device-free sens-
ing, taking structural vibration-based human sensing as an example,
the systems utilize structures as sensors to indirectly infer human
information and are sensitive to the structural characteristics at
the deployment. As a result, for pure data-driven approaches, it

1Note that for mobile system that tries to optimize the area exploration and coverage
is out of the scope of this paper.

indicates the requirement of labeled data for each deployed sys-
tem/environment, which makes it impractical for large scale deploy-
ment and/or system maintenance. For wearables, human variation,
including how an individual wears the device, as well as individ-
ual behavior/motion di�erence would cause the data distribution
over di�erent users to change. As a result, for pure data-driven
approaches, it indicates labeled data collection for each individual
user, which makes the technology di�cult to be applied for a large
scale user group. These challenges are less of a problem for ‘de-
veloped’ sensing modalities such as computer vision datasets [44]
or IMU-based human activity recognition (HAR) datasets [45]. In
recent years, e�orts have been made for these ‘developing’ sensing
modalities dataset sharing [46, 47]. However, due to the lack of
standardized data acquisition procedures and hardware, the lack of
datasets of these new sensing modalities is still a challenge before
we can make these systems more pervasive and adaptive.

3.4 (C4) System cost and data quality
The trade-o� between lowing the system cost and enhancing the
sensing data quality is challenging for IoT sensing systems. For
person- and room-scale systems, the high cost would make the
system di�cult to be a�ordable by the individual or family. For
city and area-scale systems, high-cost devices make it di�cult to
achieve high density or large coverage of the deployment. The
state-of-the-art approaches including utilizing the physics model
to enhance the data-driven estimation with limited high-resolution
sensors [48], utilizing the mobility of the platform to enhance the
coverage of the system with limited devices [49, 50]. However, the
challenges remain. To further systematically enhance the sensing
system data quality, the environmental and hardware impacts on
the data needs to be quanti�ed by key impact factors.

4 POTENTIAL RESEARCH DIRECTIONS
We identify a few of the key research questions in terms of de-
veloping a reliable and cross-scale collaborative device-free and
wearable-based human sensing systems.

4.1 (D1) Enhance information acquisition
resolution through collaborative sensing

The device-free and wearable-based human sensing systems often
demonstrate complementary characteristics because they have dif-
ferent speciotemporal resolutions and coverage. As a result, one
direction or opportunities is to combine device-free and wearable-
based sensing to enhance the human information acquisition’s
spatiotemporal resolution.
4.1.1 (D1.1) Temporal knowledge transfer for device-free systems via
wearable. On-body sensors involve the deployment of extremely
reliable and high-resolution sensing sensors to monitor human
physical stages - emotion, eating/drinking habits, stress, pain, oxy-
gen level, blood pressure - resulting in smart wearables. On the
other hand, device-free human sensing systems at home, cars, shops,
schools, and more to capture lower-resolution user activities - walk-
ing, talking, running, breathing, etc. In a collaborative sensing
scenario, temporal knowledge obtained from high-�delity sensing
data obtained by wearable sensors can be used to improve/enhance
device-free sensing capability. Speci�cally, wearable sensors can
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be used to characterize the background noises at di�erent envi-
ronments for physics-informed transfer learning for device-free
systems. Moreover, wearable sensing information can be exploited
to train device-free systems to enable new sensing capabilities. As
an example, clean EMG, EEG, EOG signals captured by wearable
sensors can be used to train vision-based sensing systems to en-
able human emotion monitoring (happiness, sadness, surprise, fear,
anger, disgust, and contempt monitoring) using device-free sen-
sors. In addition, monitoring human activities in the multi-person
scenarios such as family gatherings, students in a class, people in
a meeting, passengers on a train/car/airplane is challenging with
existing device-free sensors. In these scenarios, wearable devices
can provide its identity to surrounding device-free sensors allow-
ing these infrastructure sensors to be able to identify patterns and
extract signals from individuals.
4.1.2 (D1.2) Spatial knowledge enhancement for wearable via device-
free systems. The performance of wearable sensors is heavily suf-
fered by ambient factors, especially human artifact, movement, and
mobility (C2). Existing physiological sensing techniques only per-
form reliably with ‘static’ or ‘semi-static’ environments such as (1)
sleep [43], (2) sitting [32, 51, 52], driving [53], building wearable
systems that still work during everyday activities is challenging.
In a collaborative sensing environment, the wearable devices can
exploit sensing information provided by device-free systems to
remove these noises. In particular, device-free systems can monitor
environmental noises (e.g., magnetic �eld, electric �eld, acoustic,
.etc.) and transfer that knowledge to wearable devices for self-
con�guration. In addition, the ability to localize user location at
centimeter-level using an existing device-free system such as light-
based [54], Wi-Fi-based [55], mmWave-based [56], and ultrasound-
based [57] techniques would greatly bene�t wearable devices in
multi-person sensing scenario.

4.2 (D2) Information inequality between
device-free and wearable human sensing

Due to the nature of these systems (device-free v.s. wearable), the
sensing ability of them is di�erent when applied in di�erent scales
of IoT sensing systems. For example, for human sleep monitor-
ing, the wearable can be designed to acquire EEG, EOG, and EMG
[43], while device-free sensing can capture motion or action level
of information [24, 58]. Wearables can easily capture the person-
scale information with �ner granularity compared to device-free
approaches. For room-scale and city-scale information acquisition
(e.g., occupant localization or tra�c pattern prediction), infrastruc-
ture sensing (device-free) [59, 60] would provide spatial informa-
tion that allows accurate inference, which the wearable is often
not designed to capture. Instead of considering this inequality as
a constraint (C4), we can utilize such information inequality over
multi-scale IoT systems to enable cross-scale cross-modality in-
formation association. Once such association is established, the well
‘developed’ knowledge in one can be transferred to the ‘developing’
knowledge learning of the other. For example, we consider the sleep
stages and their relation to EEG, EOG, and EMG signals are well
‘developed’ knowledge, which can be transferred to the co-located
structural vibration-based sleep monitoring system. This would
allow the establishment of the relation between in-sleep motion and
sleep stage to monitor users who do not or cannot wear wearable.

4.3 (D3) Collaboratively reduce deployment
density and con�guration requirement

One of the common research goals for IoT sensing systems is to
reduce the system cost, which includes but is not limited to the
price of the device, the number of devices needed to ensure cov-
erage, power consumption, installation & maintenance e�ort (C1,
C4). Wearables enable continuous monitoring, which can provide
feedback on maintaining device-free deployment e�ciency with
minimum devices. On the other hand, the environmental or context
information provided by device-free systems could enable wearable
sensing with fewer devices, which makes the wearable deployment
more practical for everyday usage. Besides, given the dynamic of
sensor availability at any time, designing a reliable solution to au-
thenticate data sources and users, are critical. Collaborative design
can associate biometrics, which can be easily measured by wear-
ables, and in-situ context, which can be acquired from device-free
human sensing, to enable e�ort free data sources authentication.

4.4 (D4) Quantify quality of sensing as a service
Up to this point, we have covered di�erent approaches of combining
the two types of sensors mostly at the research and development
stage - building prototypes, we now discuss how their sensing in-
formation can be leveraged to asset each other performance during
a deployment. We de�ne the quality of sensing (QoSen) as a
relation between measurable cyber (hardware) and physical (envi-
ronmental) factors and the system performance (e.g., classi�cation
accuracy). For device-free human sensing systems, various environ-
mental factors could impact the QoSen, including and not limited to
ambient noise level, signal propagation path and medium [61]. The
hardware con�guration could also impact the acquired signal (after
ADC), including analog �lter, ampli�er gain, ADC resolution, etc.
[62]. For wearables, environmental factors impacting the QoSen
include and are not limited to amplitude over noise level (e.g., the
electrical, magnetic �eld, acoustic noises). Hardware con�guration
could impact the ability to extract overlapped frequency signals, in-
cluding analog/digital �lter, notch �lter, ampli�er, ADC architecture.
In particular, designing proper �lters and ADC architecture (i.e., >
24 bits, ⌃ � � architecture) is a must for most physiological wear-
able sensing devices. To quantify these impact factors through the
sensing signals enables the system self-diagnose on the quality of
the sensing procedure, which can be used to further ‘debug’ the IoT
sensing system deployment and enhance the system performance.
The complementary information from device-free and wearable
sensing systems would enable automatic assessment for this quality
of sensing by leveraging the shared-context of co-located systems.

5 SUMMARY
In this paper, we discussed the opportunities to push the boundaries
of both device-free and wearable-based sensing modalities based
on their collaborative adaptation. The future of IoT human sensing
poses great opportunities for collaborative device-free and wear-
able sensing at homes, cars, o�ces, schools, airplanes, and beyond.
There are many challenges in developing reliable and cross-scale
device-free and wearable-based human sensing systems. Exploiting
collaborative wearable and device-free sensing would signi�cantly
improve both categories of systems’ performances as well as enable
new exciting applications.
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