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Abstract—Breathing volume measurement has long been an
important physiological indication widely used for the diagnosis
and treatment of pulmonary diseases. However, most of existing
breathing volume monitoring techniques require either physical
contact with the patient or are prohibitively expensive. In this
paper we present an automated and inexpensive non-contact,
vision-based method for monitoring an individual’s tidal vol-
ume, which is extracted from a three-dimensional (3D) chest
surface reconstruction from a single depth camera. In particular,
formulating the respiration monitoring process as a 3D space-
time volumetric representation, we introduce a real-time surface
reconstruction algorithm to generate omni-direction deformation
states of a patient’s chest while breathing, which reflects the
change in tidal volume over time. These deformation states are
then used to estimate breathing volume through a per-patient
correlation metric acquired through a Bayesian-network learning
process. Through prototyping and implementation, our results
indicate that we have achieved 92.2% to 94.19% accuracy in the
tidal volume estimations through the experimentation based on
the proposed vision-based method.

I. INTRODUCTION

Monitoring patient tidal volume over time can be effectively

used to extract important indicators of pulmonary medical

conditions that are identifiable through a patients respira-

tion patterns. The applicability, portability, and accuracy of

these techniques based on this premise have been extensively

surveyed [1]. The inherent objective of these approaches

is to accurately monitor respiration rate or tidal volume to

identify respiratory disorders and eradicable conditions such

as pulmonary edema, pneumothorax, and chronic diseases

such as tuberculosis, cystic fibrosis, and chronic pulmonary

disease (COPD). Several approaches introducing a vast array

of techniques have been proposed over the course of several

years utilizing different sensor types including: camera-based

[2], [3], Doppler radar-based [4], laser-based measurement

[5], infrared (IR) imaging [6], magnetometers [7], and high-

resolution accelerometers [8], [9].

The ability to provide self-contained systems for the detec-

tion of these conditions plays a critical role for at-home care

patients and those without access to typical in-clinic solutions

for regular monitoring, a domain where intuitive vision-based

techniques provide an unobtrusive cost-effective solution. Sev-

eral contributions within the vision-based respiration modeling

domain have been aimed at efficiently extracting a patient’s

breathing rate by identifying and measuring visible chest

displacements over time. Recent developments in affordable
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Fig. 1. Proposed system environment for real-time surface-based tidal volume
monitoring. Emphasis: screen illustrating the real-time surface reconstruction
and estimated tidal volume during the patient monitor training process. This
setup illustrates the non-invasive methodology proposed by our vision-based
tidal volume estimation technique.

high-resolution depth-imaging hardware have facilitated de-

velopments using infrared projection [10] and depth-imaging

techniques [11] for monitoring patient respiration rates in

clinical and sleep-based studies. These contributions illustrate

the utility in providing unobtrusive vision-based approaches

facilitating respiratory pattern estimation for patient care;

however they contain manual configuration procedures for

chest region identification and are limited in their accuracy due

to low resolution 2D depth-image orthogonal displacements.

While vision-based monitoring systems also suffer from

inherent challenges related to occlusion, monitoring distance,

and clothing related interference, this technique remains one

of the least intrusive (non-contact) methodologies to moni-

toring a patients respiration patterns in real-time. However,

the requirements that occur in any vision-based monitoring

technique must be counterbalanced by the quality and accuracy

of the estimation model. The premise of any vision-based

approach that provides highly accurate estimates must rely on

the assumptions that the patient resides within an unobstructed

environment, that their clothing is classified as form-fitting
where we define form-fitting as any light material that loosely

adheres to the patients underlying chest surface, and the patient

resides within the device field-of-view (FOV).

In this work we propose a methodology that facilitates unob-

trusive monitoring of respiration patterns of a patient observed

through an individual depth-imaging device with skeletal-

tracking [12], [13] data as a self-contained automated respira-

tory monitoring framework shown in Figure 1. This method
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presents a novel approach for direct tidal volume estimation

derived through 3D iso-surface reconstruction bridging the gap

between 2D depth-based monitoring and three-dimensional

space-time modeling introduced by prior approaches [2]. This

approach extends prior non-contact vision-based techniques

that generate three-dimensional chest models [14] to provide

a new means of extracting breathing characteristics specific

to the monitored individual’s chest deformations represented

by water-tight surface reconstructions. These behaviors and

reconstructions are then used to accurately model the patient’s

unique respiratory patterns and directly measure the patient’s

corresponding respiration rate and tidal volume.

To increase the accuracy of the estimated tidal volume based

on the direct measurement of an individual’s characteristic

respiratory patterns, we introduce a regenerative Bayesian-

based neural network to improve the correlation between the

calculated volume and the patient’s unique breathing character-

istics. This process provides a per-patient correlation between

the measured tidal volume and the patient’s actual tidal volume

recorded with a spirometer. This technique is consolidated into

our automated monitoring process as an initial training period

within the real-time monitoring procedure to provide accurate

respiratory rate monitoring and tidal volume estimation.

II. RELATED WORK

Numerous techniques have recently been proposed for

monitoring breathing, they are not only supported for clin-

ical purposes but also for in-home well-being monitoring.

Polysomnography (PSG) is a gold standard technique to

breathing monitoring, but it is complicated, expensive and is

not available for testing in most rural areas [15]. Using other

traditional techniques such as spirometer and nasal thermocou-

ples are obtrusive and not practical for continuous monitoring.

Prior straightforward approaches place accelerometers and

gyroscope sensors on the patient’s chest and measure the chest

movement according to the acceleration change. These accel-

eration changes are then used to infer the breathing volume [8].

However, this technique is also obtrusive and less accurate due

to the effects from drifting noises of acceleration data itself.

Wireless-based techniques has also attracted attention for

breathing monitoring purposes [4]. However, most of wireless-

based techniques are used to estimate the breathing rate,

which cannot provide fine-grained information of breathing

behavior and complex chest deformations. Breathing volume

is also approximated by observing the effect of frontal chest

movements on the phase of the reflected-off wireless signal

when a radar beams a continuous wave signal directly to the

patient’s chest [16]. However, as different areas within the

chest move differently, these techniques are not suited for

capturing complex surface deformations of the patient’s chest

as they breathe.

Vision-based respiratory monitoring is a relatively new

prospect with respect to real-time fine-grain tidal volume

estimation. Recent depth-imaging hardware developments (e.g.
Kinect-2) have provided vision-based techniques with the high

resolution depth images that are required to adequately capture

the fine movements of a patient’s chest during the respiration

process. Recent developments in depth-image processing have

provided the basis for recording the periodic displacement

of a patient’s chest wall or surface from a static reference

plane [3]. The summation of this frontal displacement with

the depth-image can then be used to estimate the respiration

rate and tidal volume of a patient [2], citing a high correlation

between the recorded volume and the corresponding spirome-

ter measurement. Similarly, techniques proposing a method of

extracting the tidal volume of a patient by reconstructing an

orthogonal representation of a triangulated surface defined by

the depth-cloud collected by the Kinect-1 [17]. In this work

the process of identifying the thoracoabdominal domain has

been automated by utilizing the skeletal information provided

by the device; however this only identifies a limited region of

the chest surface from which the tidal volume is inferred.

The fundamental deformation model presented within each

of these techniques is based on an orthogonal projection of the

chest displacement in the direction of the monitoring device

using a time-series alteration of the three-dimensional shape.

While this model allows for some flexibility in the positioning

of the patient, it does not accurately represent the natural

surface deformation imposed on the patient’s chest. In this

work we present an alternative model that utilizes an omni-

directional expansion to more accurately represent monitored

chest deformations.

III. METHOD OVERVIEW

The accurate estimation of a patient’s tidal volume using

a vision-based technique is dependent upon both the model

of respiratory deformation patterns and the correspondence

relation used to provide a correlative link between this be-

havior and the actual tidal volume. The challenges presented

in obtaining an accurate estimation result are derived from

the correlation of the models from the true deformation be-

havior and the means of accurately obtaining the prerequisite

correspondence for populating the models estimation basis.

In the respiratory monitoring framework we propose, we

address these challenges by introducing a two phase corre-

spondence model from which the chest surface deformations,

respiration rate, and tidal volume can be effectively extracted

and estimated on a per individual basis. This estimation is

initially obtained using direct 3D volume measurement and

then improved using a per-patient trained correlation function.

Fig. 2. Color point-cloud acquired from the device with the both the skeletal
and clipping cylinder super-imposed. Any vertical posture within the devices
field-of-view (FOV) is valid with our approach.
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To obtain these individualized respiratory characteristics,

we have developed a methodology for extracting a complete

volumetric iso-surface that includes the deformation behavior

of the patient’s left thorax, right thorax, and abdominal region.

We also introduce a new deformation model that provides a

closer representation of a naturally expanding chest cavity to

increase the accuracy of a patient’s estimated tidal volume.

This respiration model is then combined with a adaptive

correspondence model that utilizes a Bayesian-based neural

network to populate a regenerative tidal volume estimation.

A. Omni-directional Deformation Model

The proposed respiratory model is fundamentally composed

of the accurate reconstruction of a volumetric region enclosed

by an iso-surface that describes both the deformation charac-

teristics of a patient’s chest and the change in volume of the

patient’s chest. The premise of our omni-directional model is

based on the accurate approximation of a solid volume by

its characteristic function formed from a set of unordered,

oriented points that allows us to extract the iso-surface that

describes these characteristics.

In this approach, we minimize the mobility of the patient

during the monitoring process to employ this omni-directional

chest deformation model to form a more accurate basis for

the correlation between a patient’s chest deformations and the

corresponding tidal volume. This also allows us to consider the

chest deformations specific to the monitored patient within our

estimations providing a better model to infer the associated

tidal volume. In this section, we describe the basis of our

model as compared with prior techniques and provide an

derivation of how this model is applied to form a more accurate

representation of the chest deformations observed during a

patient’s breathing cycle.

Prior techniques for modeling chest movement utilize or-

thogonal deformation models of a patient’s chest surface to

infer the correlation between the monitored chest movements

and the corresponding tidal volume. These models are based

on the orthogonal movement of the chest within a depth-

image as displacements. The change in these displacements

is then utilized to form a correlative relation between the

chest displacement and the estimation of the patient’s tidal

volume. Our method is motivated by the observation that

this deformation model does not accurately represent the

known physiological displacements of a human lung during

the respiration process. The images in Figure 3 illustrate the

difference between an orthogonal displacement model and the

proposed omni-directional model.

Omni-DirectionalOrthogonal

Volumetric Displacement Models

Fig. 3. Comparison (top sectional view) of existing chest displacement
models and the proposed omni-directional deformation model. An omni-
directional model (right) provides a closer approximation of the natural chest
displacements within the patient’s chest during the respiration process when
compared to an orthogonal model (left).

An omni-directional deformation pattern provides a closer

approximation of the true displacements imposed on a patient’s

chest surface as they breathe. This is formulated based on

the observation that the displacement incurred while breathing

effects the estimated tidal volume which is a function of the

expansion of the left and right thorax (e.g. the chest is modeled
as balloons rather than a set of uniform displacements). Using

this observation, we aim to increase the accuracy of the

deformation model that is used to derive the correspondence

between chest deformations and the estimated tidal volume.
The derivation of our model based on the established

methodology of reconstructing solid model surfaces from

unordered, orientated, point sets [18]. We then illustrate the

application of this method as a means to accurately estimating

a patient’s tidal volume based on the volumetric changes in

the patient’s chest model. In this formulation we denote the

patient’s chest C(t) as a three-dimensional solid with volume

V (t) contained within the closed boundary surface S(t) ⊂ R
3.

This is derived from the fact that the Divergence Theorem:˚
V (t)

∇ · �F dV =

‹
S(t)

〈�F , �n〉 dS (1)

allows the volume integral of the solid chest region to be

expressed as the surface integral which can be approximated

using Monte-Carlo integration assuming discrete uniform sur-

face sampling where �F = (Fx, Fy, Fz) : R
3 → R

3 and �ni is

the estimated surface normal at point �pi:˚
V (t)

∇ · �F dV ≈ |C|
N

N∑

i=1

〈�F (�pi), �ni〉 (2)

The aim of this technique is to reinterpret the characteristic

function of this solid region as a set of volumetric integrals

that can be computed as a summation over a set of surface

samples. The characteristic function of the patient’s chest

region, denoted as χc(t) is a function that defines the solid

volume C(t) ⊂ R by providing a function that evaluates

to one within the boundary S(t) and zero otherwise. The

discrete form of the characteristic equation expressed in terms

of Fourier coefficients can be defined as:

χ̂c(l,m, n) =

ˆ
p∈S(t)

e−i(lpx+mpy+npz) dp (3)

Using the proposed application of the Divergence Theorem, it

can be shown that due to expressing the Fourier coefficients as

volume integrals, the evaluation of the Fourier coefficients of

the characteristic function can be computed using the Monte-

Carlo approximation:

χ̂c(l,m, n) =
1

N

N∑

i=1

〈�Fl,m,n(�pi), �nj〉 (4)

such that the vector valued function: �Fl,m,n : R
3 → R

3

adheres to the condition: (∇· �Fl,m,n)(x, y, z) = e−i(lx+my+nz)
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and the the functions �Fl,m,n whose divergences are equal to

the complex exponentials. The inverse Fourier Transform of

these coefficients is then computed through a convolution of

the oriented samples through a voxel grid to extract the solids

characteristic function [18].

From the accurate reconstruction of the surface S(t) that

bounds this solid region through the Monte-Carlo approxi-

mation, the basis of our omni-directional model provides a

high resolution approximation of the deformations observed

during the respiration process. Based on this approach, we

aim to provide a more accurate estimation of the patient’s

tidal volume due to the more accurate representation of the

patient’s chest deformations.

B. Chest Volume Extraction

Non-contact based methodologies inherently require a

means of identifying the patient’s position and orientation in

space as a prerequisite to estimating the tidal volume that

corresponds to the observed chest movements. Automating this

process provides consistency in the region of interest moni-

tored for surface changes and limits additional requirements

imposed on the patient during the monitoring process. The

automation of this process also eliminates the requirement

of strictly limiting the patient’s position to a pre-configured

region of interest. Rather we build on the premise that the

skeletal data can be utilized for automating the process of

identifying the patient’s chest region [17] and exploit this

information to simplify the monitoring process.

In this section we describe the process of identifying and

extracting the patient’s chest region to calculate the volume of

the deformable surface that describes the respiration patterns

of the patient. The image in Figure 4 illustrates this process.

Point-cloud Data

Skeletal Frame

Pa�ent Chest
Region Clipping

Surface-hole FIlling

Normal Es�ma�on

Monitored
Deforma�on Cloud

Surface
Reconstruc�on

Chest Volume
Calcula�on

Fig. 4. Overview of the proposed approach to reconstructing the patient’s
chest surface in real-time. Each of the identified steps must be recalculated
for each frame during the monitoring process. This provides an active
representation of the patient as they are monitored and the resulting surface
deformations closely illustrate the patient’s breathing state.

The basic premise for reliably detecting the chest surface

of the patient is derived from the acquisition of the sampled
depth-image Ds(t) (depth samples per-timestep) containing

the patient and the raw skeletal data. Based on the forward

orientation of the patient, assuming no occlusions, we consider

the skeletal information as a basis for interpreting a chest

subset c, denoted as Dc(t), of the n-sampled depth image

Ds(t) as the chest region c of the patient at time t.
The subset of pixels pij ∈ Dc(t) that reside within the

cylindrically clipping region c, defined by the patient’s skeletal

structure and position, contribute to the definition of the

patient’s chest region. From this point, the objective is to

form a representation of the patient’s entire chest region as

an enclosed volume defined through a point-cloud containing

oriented points that approximate the patient’s chest deforma-

tion states as a function of time, referring to this surface

approximation as the volumetric deformation-cloud P(t). The

samples collected from the depth-image, converted into three-

dimensional coordinates, lack orientation vectors that approx-

imate the curvature of the patient’s chest. Therefore, in our

reconstruction process we must generate accurate estimates of

these normal vectors. Since timing is critical to the viability of

this technique, we have proposed a reliable algorithm based on

standard stencil techniques to approximate the surface normals

within an organized point-cloud, covered in Section V.

Since the depth-image chest region subset contains a signif-

icant portion of occluded surfaces, including clipped regions

and the patient’s back, we propose a simple methodology

for filling these occluded regions. This process is required

to generate an enclosed volume to reconstruct a volumetric

mesh of the patient’s chest. In the process of approximating

the surface of the occluded regions within the volumetric

deformation-cloud, we employ a planar projection technique

for mapping a patient’s chest points as a fixed back surface

and introduce a convex-hull based projection algorithm for

filling the remaining clip holes (e.g. neck, waist, etc.). The

aggregation of the chest, back, and generated clip-region points

form the state of the volumetric deformation-cloud that is then

used as the input to the iso-surface extraction algorithm. The

overview of the proposed method is presented in Algorithm 1,

where B(t), N(t), W (t) represent the set of back, neck, and

waist points respectively, P(t) is the volumetric point cloud,

and S(t) is the reconstructed chest surface mesh.

Algorithm 1: Chest Mesh Volume Extraction (each time-step)

input : Ds(t) - n-Sampled Depth-image
S(t) - Patient Skeletal State

output: Vm(t) - Iso-surface Mesh Volume

foreach pij ∈ Ds(t) do
if pij ∈ c then

C(t) ← pij
end

B(t) ← PlanarProjection(b̂, α, C)
N(t) ← ConvexPlanarProjection(neck joint, Ec(t))
W (t) ← ConvexPlanarProjection(waist joint, Ec(t))

P(t) ← ∪ C(t) ∪ B(t) ∪ N(t) ∪W (t)
S(t) ← Iso-SurfaceExtraction(P(t))
Vm(t) ← SignedTetrahedralVolume(S(t))

return Vm(t)

The generation of this deformation model over time de-

scribes the deformation characteristics of the patient’s chest

that provides a correlation to the associated tidal volume. From

the voxel-based surface reconstruction process, the generated

triangulated mesh that represents the patient’s chest volume

Vm(t), is directly calculated using the signed tetrahedral

volume algorithm [19].

Since the resulting surface reconstruction contains a sig-
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nificant volume (including tissue and bone), we denote the

volume initially recorded during the monitoring process as the

base volume V0. This value will then be subtracted off of all

subsequent volume calculations to provide the discrete value

dV for each time-step. Since this represents the form of our

deformation correlation to tidal volume, dV is equivalent to the

patient’s tidal volume. In section IX-A, we extend this method

through training to achieve a more accurate estimation.

IV. CHEST-SURFACE ACQUISITION

The acquisition of a depth-image from any infrared monitor-

ing device incurs a natural variance in the depth measurements

that are obtained within a single frame. In the instance of

depth-imaging devices, the depth error associated with each

pixel pij , is a function of the distance to the reflective surface

being monitored as well as the surfaces material properties.

Additionally, each pixel must be classified as part of the patient

or as part of the background. The natural fluctuations within

this process and depth measurement errors can degrade the

accuracy of our tidal estimation. Therefore, in this section we

cover the implementation of the cylindrical clipping region

(Figure 5) and the associated pixel history tracking algorithm

provided to minimize high-frequency pixel fluctuations.

The clipping cylinder that identifies the patient’s chest

region is defined through an automated process based on

the subsection of a conventional skeletal frame illustrated in

Figure 5.a. Specifically, the base of the cylinder is positioned

at the hip joint h, and extends to the neck joint n. The radius of

this cylinder is defined by the average distance of both the left

l and right r shoulder joints. The generalized construction of

this cylindrical clipping volume provides a viable heuristic for

identifying the patient’s chest volume bound by the accuracy

of the skeletal joint estimations.

(a) (b)
Fig. 5. Clipped skeletal structure provided by the Kinect-2 with our associated
clipping cylinder (a). The depth-image bit history within the clipped region
is utilized for removing depth measurement fluctuations belonging to the
patient’s chest surface (b).

To alleviate the natural fluctuation of the depth-image pixels

that are determined to be part of the patient’s body, but

reside within the edges of the clipping region, we provide

a simple stability scheme based on pixel tracking history. A

visualization of this pixel-history is provided in Figure 5.b. If

the tracking history of the pixel pij is saturated (continuously

tracked) for the entire bit history length (bh), then it will

contribute to the definition of the generated deformation-cloud.

This reduces the impact of fluctuating pixels as they are

automatically culled from the background samples.

V. STENCIL-BASED NORMAL ESTIMATION

The process of reconstructing the surface of the scanned

chest region requires every sample collected within the depth-

cloud to have an estimated orientation that approximates

the curvature of the surface. Normal estimation for surface

reconstruction is a well studied research topic and several

normal estimation techniques [20] have been developed and

successfully employed within the Point Cloud Library (PCL)

with widespread use. These techniques include k-neighbor or

radial search for estimating normals for unordered point clouds

[21]. and integral image normal estimation based on ordered

depth-images [22]. However, in the process of clipping the

patients chest region from the acquired depth-cloud, these

techniques are ill suited for two reasons: (1) the additional

computational cost associated with an unordered point set

occupies unnecessary frame-time when adjacency information

is known and (2) integral image techniques provides highly

consistent estimated normals for ordered point-sets, but is not

applicable in the instance of calculating reliable normals for

the points that compose the edge of the clipped chest region

due to the border of its rectangular region.

Due to the limiting factors of these recently developed

normal estimation techniques in their application to the depth-

cloud within the patient’s clipped chest region, we employ

an iterative stencil-based technique to accurately estimate

all surface normals, including edge points and corners with

missing adjacent neighbors. This is accomplished using the

standard technique of sampling neighbor points to obtain an

averaged cross-product that estimates n̂ij at point pij .

Fig. 6. Stencil-based normal estimation for different stencil sizes n = 3, 5, ...
to estimate the normal n̂ij at point pij . As the stencil size is increased, the
number of samples per point Pij increases to contribute the surrounding area
to the normals orientation.

The implemented technique relies on a stencil-based neigh-

bourhood selection algorithm that calculates the cross-product

of the current point pij with its surrounding neighbours. Based

on the size of the stencil, c concentric squares are formed

around the point where: c ≥ 3 and c % 2 = 1.

n̂ij =
c∑

i=1

�pi × �pj
|�pi × �pj | (5)

This calculation is then repeated through iterative clockwise

rotations to provide an averaged normal estimation. For each

concentric square at level i, each of the possible cross-products

are calculated. Edge cases are handled by the 2D generation of

valid point indices within the depth-image. After i iterations,

the current sum is normalized to obtain the estimated normal

of the surface at (i, j). The total number of cross products
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performed for the given stencil size n is provided by:
∑n

i=3 2
i

with a normalization. An illustration of this algorithm for n =
5 is illustrated in Figure 7.

(1)

(2)

Fig. 7. Stencil-based normal estimation with a stencil size: n = 5 and the
corresponding clock-wise crossproduct sampling indices for the central point
at pij . Each row (i) illustrates iteration i of the algorithm for evaluating
the cross-products at level i. All sampled cross-products from all levels are
summed and then normalized to derive the estimated surface normal n̂ij .

A consideration for this normal estimation technique is

addressed by the use of the integral image technique for

calculating smoothed normals without relying on large stencil

sizes. Naturally, larger stencil sizes require a higher number of

samples, thus degrading the execution time of this technique.

However, when using small stencil sizes (e.g. 3, 5), the algo-

rithm provides normals that approximate the results provided

by the PCL unorganized point set algorithm while generating

accurate edge normals. An illustration of the normals estimated

using the stencil-based technique is shown in Figure 8.a.

VI. HOLE FILLING

To construct the surface of the patient’s chest for calcu-

lating the corresponding tidal volume, the resulting surface

mesh must form a water-tight model. To obtain this model,

all occluded and clipped cross-sections must be filled with

valid estimates of the surface curvature to form an enclosed

volume. These regions are formed by the lack of any surface

information about the patient’s back and the clipped regions

that are not visible to any depth scanning device (e.g. cross-

sections of the waist, neck, arms). This section describes the

process of encapsulating the unbounded region defined by the

clipped depth-cloud that defines the patient’s chest surface.

A. Planar Hole Fill Algorithm

The clipped regions of the patient’s chest provides four

primary holes that must be properly filled to enclose the

monitored chest volume. Based on the premise of planar grid

projection we can easily fill a planar region within an n-sided

polygon with a uniform grid of oriented points. This process

is used once the edge points of the chest region have been

identified and specific joints from the skeleton are used to

identify the closest points to the clipped regions from the

edge point sets. This is accomplished using the following

algorithm: (1) Planar projection of chest edge points Cp(t),
(2) 2D Convex Hull on Cp(t), (3) Grid Generation based on

AABB of Convex Hull, (4) Point-in-polygon test for included

grid points, (5) Generate uniform surface normals.

B. Clip-region Surface Filling

During the process of identifying the chest region of the

depth image using the skeletal information, the clipping region

of the cylinder introduces newly opened regions that must be

filled to construct the chest iso-surface. These regions include

the neck, waist, and arms. For the larger clipped neck and waist

regions, the characteristic function of the generated surface

will be unbounded in these regions and for consistency we

cannot allow an arbitrary interpolation scheme to dictate the

surface closure in these regions.

(a) (b)

Fig. 8. Neck-edge points determined by a radial search from the neck joint
position (a). The application of the planar hole fill algorithm within the
calculated convex hull providing a uniformly closed clip region (b).

Due to this, the planar hole filling algorithm is employed to

populate these empty regions with uniformly spaced generated

point samples. For each of the generated samples within these

regions we assume uniform normals that complement the

surface direction required for constructing a iso-volume of the

chest region. The image in Figure 8 illustrates this process.

C. Back-region Surface Filling

The remaining hole, caused by the occlusion of the patient,

is the completely occluded back region. To ensure consistency

of the unknown back surface, we introduce a simple back-fill

algorithm to ensure that the naturally occluded region of the

back is populated with an estimate of an appropriate surface.

This is obtained by utilizing the orientation of the skeletal data

(illustrated in Figure 5.b as b̂) and projecting all of the existing

chest surface points to a backward facing plane with offset

from the spine α. The offset value of α only has to provide

a consistent distance to the back plane and is defined as α =
5.0[cm] to simply define an average patient back depth. This

is an inherently fast approach and provides a closely matched

region of points that complement the curvature of the chest

points, which aides in the reconstruction of the chest surface.

VII. SURFACE RECONSTRUCTION

The premise of our technique is based on the accurate

calculation of a total patients chest volume based on the

surface describing the left thorax, right thorax, and abdominal

region during the respiration process. To achieve this we

utilize an iso-surface reconstruction technique that allows us to

efficiently generate a bounded region as volumetric mesh that

corresponds to an estimation of the patients tidal volume as the

reconstructed model deforms over time. Accurately estimating

the tidal volume and respiratory rate using the proposed omni-

directional surface technique requires a robust methodology

214214



for surface reconstruction based on a set of unordered, oriented

surface points. Additionally the reconstructed surface must

maintain the following properties: (1) the generated surface

forms a manifold mesh, (2) the triangulation is water-tight,
and (3) the ordering of every triangle within the surface is

consistent. From the premise of extracting a surface from a set

of unordered, oriented points, [23] provide an effective means

of generating a surface conforming triangulation through the

use a variation of the Marching Cubes algorithm [24]. These

techniques are consolidated within our model presented in

Section III to ensure the construction of a water-tight, manifold

mesh with consistent ordering.

In each individual frame recorded from the monitoring de-

vice, the surface of the chest is clipped and the corresponding

surface normals are estimated and the remaining holes within

the surface are closed using our uniform projection technique.

Each of these independently acquired oriented point sets are

then consolidated into an individual unordered, oriented point

cloud. This cloud is then used as the input to the surface gen-

eration algorithm. Succinctly, the surface generation process is

as follows: (1) the oriented point sets are splatted into a voxel

grid, (2) the voxel grid is convolved with an integration filter,

an estimation of the characteristic function using Fast Fourier

coefficients extracted using FFTW [25] and (3) the extraction

of the surface is achieved using a variant of the marching cubes

algorithm with cubic interpolation. The images in Figure 9

illustrate the surface reconstruction process for three individual

states during a patient’s respiration process.

Fig. 9. Chest surface reconstruction for two independent states: (a) inhale
state and (b) inhale state. Even while wearing a normal shirt, the deformation
patterns of the patient’s chest are visible. As the clothing becomes more form-
fitting we naturally see a better representation of the patient’s chest rather than
the surface of the clothing. The image in (c) illustrates the highlighted cross-
sectional difference between the inhale and exhale states.

From the water-tight manifold mesh that is generated

through this process, we can simply calculate the volume

of this volumetric mesh using the signed tetrahedral volume

algorithm. As the resolution of the mesh is decreased, the

sample rate increases, however this reduces the accuracy of

this technique due to the loss of deformation behavior over

the surface of the chest. Similarly, increasing the resolution

provides diminishing returns with respect to the accuracy of

the estimated tidal volume. Therefore, we select a voxel grid

size that provides an accurate chest surface representation.

Note: We do not filter sliver triangles generated from the Marching Cubes
surface extraction. This requires an additional process that does not drastically
effect our volume calculation.

VIII. ENHANCED TIDAL VOLUME ESTIMATION

In this section, we design an algorithm to robustly demod-

ulate fine-grained tidal-volume estimated from volume esti-

mated by the depth-imaging device. Since our method is built

on a physiological premise of the harmonic movement between

the omni-directional chest expansion and the associated tidal-

volume, we utilize this phenomenon as the leading principle

for our training algorithm.

A. Training Algorithm

The proposed training process quantifies the relationship

between chest movement (mesh volume) and breathing volume

of the patient and is only needed once for each patient. During

this process, the patient is asked to stand within the device

FOV and breathes normally into a spirometer (Figure 1). The

ground-truth breathing volume of the patient is recorded by

spirometer Vs(t). The main objective is to find a non-linear

correlation function Fc of Vm(t) and Vs(t).
Several challenges need to be addressed to properly extract

the correlation function Fc. First, the deformations imposed

during the patient’s breathing cycle are minimal. Second, it

is difficult to detect minute volume changes given the noise

inherently introducing by body movements and the variation

of chest surface caused by the patient’s clothing. Finally, the

nonuniform movement of the chest during breathing cycle

makes the correlation between mesh vs. breathing volume to

be dependent on proper experimental setup and the distance

of the patient to the monitoring device.
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Fig. 10. The procedure of training process to obtain non-linear correlation
function between mesh volume estimated by camera and actual breathing
volume collected by ground-truth device (spirometer).

To overcome the these challenges, we exploit the regularity

and quasi-periodic nature of a patient’s chest movements. In

particular, the change in the mesh surface is highly likely

to expand and collapse along the same directions illustrated

in our omni-directional model. Moreover, the movement di-

rection only changes when the subject changes from inhale

to exhale states. Thus, we identify and group chest mesh

deformations within one half of a breathing cycle for breathing

volume estimation for which per-sample breathing volume is

inferred. In the monitoring of this process, we identified that

the depth-image noise has a Gaussian distribution. Therefore,

noise can be removed by standard filtering mechanisms. Based

on the characteristics of the required signal-processing, we
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introduce a filtered half-cycle segmentation volume estimation

technique based on the 3D measured volume and the ground-

truth provided by a spirometer provided as inputs to the

proposed training method.

To reduce the noise impact from the 3D measured volume

we introduce a bandpass filter based on a frequency of 0.23

[Hz] based on adult [26] respiration rates. Therefore, this

define the parameters of this filter with fLow = 0.1[Hz],

fHigh = 1.0[Hz]. We also use a low-pass filter with cutoff

frequency of 1.0[Hz] to removal non-breathing interference.

Due to the effect from the noise especially the distance change

between the patient and the monitoring device, the mesh

volume changes detected by the device will incur a non-zero

mean as the baseline fluctuates unpredictably. To solve this

problem, the key idea is to find the noise frequency and remove

that frequency component. In our system, we use Savitzky-

Golay filter with window size of 5 seconds and order 3 to

obtain reliable results that we utilized within our results and

evaluation.

Algorithm 2: Training algorithm

input : Vm(t)
Vs(t) /* Spirometer */

output: Fc - Correlation function of Vm(t) and Vs(t)
if bMonitoring then

Filter Vm(t) (Band-pass filter with cut-off frequencies)
Mean removal Vm(t)

Align staring point of Vm(t) and Vs(t)
Segment Vm(t) and Vs(t) into n equal segments
Re-sample Vs(t)
Align Vm(t) and Vs(t))

Obtain a non-linear correlation function Fc of Vm(t) and
Vs(t) using neural network.

end
return Fc

The filtered samples are then divided into segments. The

segmentation is based on the fact that the breathing activity

makes both mesh volume and actual volume data pass the

observed baseline repeatedly. After mean removal, the base

line is a zero-mean line and the number of inhale and exhale

is equal to the number of cross zero line of the captured data.

The zero-cross point is then considered as relative referenced

points to align both the spirometer and measured volume

data to establish the correspondence between the two signals.

This provides the basis input for our training procedure. This

presented in Algorithm 2. In our method we use a simple

bMonitoring that is considered as the start signal when

the patient’s skeleton is recognized. Once this flag is set,

we impose a 5[s] delay for the patient to prepare for the

monitoring process.

B. Neural-Network Mesh-to-Volume Correspondence

The Bayesian back-propagation learning algorithm [27]

is employed to obtain the correlation of the mesh volume

changes over time with the corresponding ground-truth vol-

ume. The mesh volume Vm(t) is passed through the system

in the first layer of the neural network. Hidden layers are

expected to generate non-linear correlation function so that the

breathing volume produced from the last layer is as close to

the ground truth volume, Vs(t), as possible. To reduce the error

between the output volume and the ground truth, the weight of

each layer must be determined. We apply the Mackay and Neal

[27], [28] weight algorithm for the correlation function. We

use sigmoid function, i.e., tanh S(t) = 1
1+e−t , as the activation

function, progressing the number of learning iterations to

1000, or the threshold limit of 0.005 liters.

IX. RESULTS

The results we present are categorized into two sections:

(1) technique evaluation and (2) performance of our real-time

system. This is due to the implementation of this technique

and the potential limitations of the hardware employed in

our solution to achieve a real-time estimation. Based on the

objective of our approach, we have optimized the performance

of our proposed methodology with respect to computation

time and tidal volume estimation based on the limitations

imposed by the Kinect-2 depth-image acquisition rate with

sampling. Furthermore, we illustrate that through the reduction

in computational costs within our approach, we are able to

extract a highly accurate estimation of the patient’s tidal

volume at distance range of 1.25[m] to 1.5[m].

A. Tidal-volume Estimation

1) Setup: We conduct an experiment over 4 graduate stu-

dents (1 female, 3 males) to evaluate the performance of the

proposed volume estimation algorithm. The participants are

required to stand in front of the camera while using their

month to breathe into a spirometer [29]. The participants are

not allowed to breath through their nose to ensure the amount

of air of inhaled and exhaled are correctly captured by the

spirometer. The distance from user is varies from 1.25[m] to

1.75[m]. The delay from the time that the skeleton is detected

until we collect the data is controllable by the implementation

and we found that 5 seconds is a suitable time limit. We also

observed that the participant may become tired and breathe

abnormally or uncomfortably after 20[s], hence, we break

down the data collection process into individual trials (20[s]

each). This process is repeated 20 times.

2) Basic volume estimation: The correspondence between

the deformations observed in the patient’s chest and the

estimated tidal volume has been established based on the

relationship between the calculated mesh volume and the

spirometer ground-truth volume. Inferring the tidal volume of

the patient based on our approach allows us to accurately

correlate chest deformations with the patient’s actual tidal

volume. Table I provides an overview of our experimental

participants contributing to our evaluated results.

The resulting data-sets are divided into two sets, one use

for training, another one is used for evaluation. This presents

the results of estimating the tidal volume using our technique

for four participants where h is the height, w is weight, cs
is chest size, and error is the mean error (based on a 0.2[s]
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TABLE I
VOLUME ESTIMATION RESULTS ACROSS PARTICIPANTS

User sex age h[cm] w[kg] cs[cm] error[l]

P1 female 28 156 47 35 0.079
P2 male 27 168 70 42 0.075
P3 male 26 170 65 40 0.067
P4 male 24 169 67 41 0.055

window). Using the proposed approach we obtain 92.2% to

94.19% accuracy within our tidal volume estimation with a

corresponding 0.055[l] to 0.079[l] error. Figure 11 provides a

plot of a representative tidal volume estimation of P2.
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Fig. 11. An example illustrating the processed camera and spirometer
correlations. The surface-based estimated tidal volume (top), training-based
estimation result (center), and its associated estimation error (bottom).

3) Distance Impact: A critical aspect of using depth-based

imaging relates to the effective distance of the monitoring

device. The noise incurred due to larger distances will in-

troduce errors and reduces the performance of the surface

reconstruction process. We have conducted experiments to

evaluate the performance of estimation when varying the

distance from camera from 1.25[m] to 1.75[m]. During the

process, the student is required to stand in front of the camera

and breath through a spirometer when varying the distance

between their chest and the camera between each experiment.

Figure 12 shows the error distribution over different distances

over 10 experiments (20[s] each).
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Fig. 12. The depth measurement errors as contributed to the reconstructed
surface model. Larger distances provide larger fluctuations in depth measure-
ments, incurring the reduction in accuracy of the estimated tidal volume.

As can be seen from the figure, the system achieves the

best performance at the distance of 1.25[m] and the worst

performance with the distance of 1.75[m]. As illustrated

within the figure, the performance of estimation is reduced

up to 85% (error is approximately 0.15[l]) when the distance

increases to 1.75[m].
4) Medical significance: Through the performed experi-

ments, we found that the breathing volume waveforms also

represent unique patterns of a participant, which can contribute

to clinical analysis of the patient’s condition. Figure 13 shows

the waveforms of the breathing volumes estimated for four

different participants. As can be seen in the figure, the signals

(of different participants) are not only different in frequency

and amplitude but also represent unique breathing form char-

acteristics. This information is not be obtained by existing state

of the art rate estimation techniques.
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Fig. 13. The tidal volume waveforms of participants P1 → P4 exhibiting
breathing characteristics that uniquely identify their breathing patterns.

Additionally, the results obtained above are independent of

the lighting conditions of the patient’s environment. Since the

device operates off of laser-based depth-images, lighting does

not contribute to the requirements for this proposed method.

B. Performance
In the analysis of our proposed tidal volume estimation

technique, we incorporate the computation time required to

facilitate the construction of the patients chest along with

the corresponding volume. The performance results provided

in this section illustrate the results of the optimizations im-

plemented within our technique to make the proposed real-

time monitoring process possible. This is due to the several

steps that are required in our chest surface reconstruction

process that are computationally expensive within the real-

time domain. Through the optimization of our technique uti-

lizing performance profilers, we are able to obtain a real-time

respiratory monitoring system using widly available hardware.
Employing an infrared-based depth-imaging technique, our

approach is subject to the distance measurement errors and

fluctuations that are naturally imposed by using this form

of depth sampling. Additionally, our approach does not use

an orthogonal projection of the depth-image to generate the

associated depth-cloud, thus the number of samples we collect

on the patient’s chest varies as a function of distance. The

results in Figure 14 illustrate the computation times associated

with a patient standing 1.25[m], 1.5[m], and 1.75[m] away

from the monitoring device. For each position the number

of samples was increased from 1 to 100. When the patient

is closer, depth-cloud density rises, giving a more accurate

estimation of the chest surface.
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Fig. 14. Computation time of each frame as a function of the number of
samples and distance. The experiment was performed at three distances:
1.25[m], 1.5[m], and 1.75[m]. For each distance, the number of samples
was increased from 1 to 100. At closer distances (1.25[m]), higher sampling
drastically increases frame computation time.

The performance characteristics of our approach are formed

through the four most computationally expensive states. This

includes: (1) depth-image sampling with clipping (Kinect-2
with only depth data) 47.77[ms], (2) chest surface normal

estimation 9.51[ms], (3) hole filling 1.39[ms], and (4) surface

reconstruction 19.73[ms]. Due to the inherent inconsisten-

cies in the depth values provided by the Kinect-2, averaged

(smoothed) samples are required to effectively eliminate these

natural fluctuations. Based on the minimization of these depth

measurement errors obtained by averaging several samples per

frame, this sampling obtains the largest portion of the frame

computation time. Thus the proposed method is currently only

limited by the ability to rapidly sample the patient’s chest

given the sampling rate of the device.

X. DISCUSSION AND CONCLUSION

In this paper we have presented a methodology of extracting

an omni-directional deformation model from the depth and

skeletal information provided by depth-imaging devices to

provide an accurate estimation of a patients tidal volume given

the correlation between the patients chest deformation behav-

ior and their corresponding tidal volume. We have outlined

the process of reconstructing an accurate three-dimensional

space-time model of a patients chest for the evaluation of

the deformations that contribute to an accurate estimate of

a patients tidal volume during normal breathing in real-time.

The results we present illustrate that through this process we

can achieve a highly accurate fine-grain real-time estimation

accuracy of 92.2% to 94.19% in the tidal volume estimates of

each participant.
The proposed two phase methodology that we have imple-

mented provides an effective means of estimating a patient’s

tidal volume using a non-contact monitoring solution based

on direct tidal volume estimation and improved using patient-

specific training. While this technique provides accurate results

under the provided set of assumptions, additional circum-

stances need to be addressed regarding (1) the distance to the

patient from the device, (2) depth measurement errors, (3) the

patient’s posture, (4) the minimization of the patient’s move-

ment during the monitoring process and (5) the simplification

of the per-patient training data representation. These factors

all contribute to the error within the presented methodology

and are left to our continued work.
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