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ABSTRACT Drivers often park their vehicles without consciously (physically or mentally) noting down the
parked location which makes it hard and inconvenient for the users to later locate their vehicles. Existing
solutions either require users to explicitly note down the parked position on their mobile device by performing
a certain action, such as pressing a button to turn on their global positioning system, or are erroneous and
inaccurate. This paper attempts to build ParkSense, a system that allows a smart phone to accurately and
automatically ‘‘sense,’’ and later navigate to, the position at which the vehicle was parked. We propose to
make use of the variations of magnetic fields and electromagnetic fields inside the vehicles to detect when
a user stops and turns off his or her vehicle. Our evaluation with an actual implementation of the system on
different mobile platforms and operating systems, tested on different mobile devices/phones and car models,
shows the detection accuracy of more than 90%, confirming the feasibility of our approach.

INDEX TERMS Parking detection, magnetic field variation, vehicular and wireless technologies, phone
embedded sensors, mobile computing.

I. INTRODUCTION
Rememberingwhere one’s car was parked has been a problem
for many drivers. For example, after a long period of wander-
ing around in a large crowded parking lot or in a busy urban
area to find an empty parking spot, drivers tend to not pay
attention to the parking location [1]. On another occasion, a
traveler hurries and parks his car in a large airport parking lot
to catch a flight. A few days later, he arrives at the parking
lot not remembering where he had parked his car. Having
a system that helps drivers remember where their cars were
parked is highly beneficial.

With the presence of GPS localization system and smart-
phone, an intuitive solution would be to save the position of
a car at parking moment using the phone-integrated GPS,
and then later to navigate the driver back to the previously
saved location through a navigation app on the phone itself.
However, with such a solution, the key question is on how
to correctly detect the parking moment to precisely save
the parked location. Existing solutions resort to having the
user explicitly indicate the parking moment to the phone, for
example, by pressing a button [2], shaking the phone [3], or
taking a picture of the parking position [4]. However, these

methods are obtrusive and inconvenient since they would
require users action every time they park the car. Another
approach is to automatically memorize the parking location
when the phone’s bluetooth is disconnected [5], [6]. This,
however, either requires users to connect the phone to the
car or purchase additional hardware. Hence, the class of
applications using this explicit approach is not viable, thus
has been modestly adopted by users. In its recent update,
Google Now released a solution that automatically saves the
parking location [7]. When the application detects the transi-
tion from driving to walking, it records the device’s location
at transition and considers that a parking position. While sim-
ple, this approach has oversimplified many possible parking
scenarios, thus, erroneous. For example, a user exiting a bus
or a passenger getting out of a car pool can create a drive-to-
walk transition, which triggers Google Now service to save
parking location, but no parking position should be recorded.
Additionally, in a scenario where a driver parks his car then
immediately gets into another car (e.g. for joining a car pool),
there will be no drive-to-walk transition detected, wherein
Google Now fails to record the parking location [8]. The
inaccuracy of the service could lead to frustration of users
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and reduce the application adoption rate. As a result, being
able to autonomously detect the parking moment, without
any user interaction with the device upon parking, is a must-
have feature of any parking spot localization system. This
confusion would have been avoided if such parking spot
localization system can identify the actual parking moment
of the vehicle.

To fill in this gap, we propose ParkSense, a system
that leveraging embedded phone sensor to accurately and
autonomously record parking locations of a vehicle. In partic-
ular,ParkSense leverages the electromagnetic signal variation
of in-vehicle environment when a driver operates her/his car.
It combines the magnetic field data with the output streams
from accelerometer and gyroscope, enabling it to track the
movement and orientation of the mobile device and the car,
and to accurately detect the parking moment to record the
parking location. We have identified and utilized a set of sig-
nature changes in the car’s magnetic field that uniquely occur
only when the car is transitioning from moving to parked
state. We implemented and evaluated the system on differ-
ent mobile devices and platforms, and tested on cars from
different manufacturers. The results show that our system
performs well in different scenarios, environment, devices
and vehicles, while consuming less energy compared to other
alternatives.

When invoked by the user on an as-needed basis, the
ParkSense algorithm could navigate its users to the current
or previous parking location using its in-app navigation com-
ponent. For the scope of this paper, we assume the availabil-
ity of a positioning service at the time of parking, such as
GPS for outdoor and wireless fingerprinting [9]–[12], using
magnetic based localization [13]–[16], andGPS-based indoor
localization as presented in [17]–[22]. We note that localizing
the position of the phone is not the focus of this paper.
Instead, this paper focuses on when a device should acquire
its location and label it a parking position. Our contributions
are summarized as following:
• We exploited the electromagnetic variation in in-vehicle
environment and identifying key signatures of user oper-
ating behavior inside a car, such as turning the engine
on/off and hitting the brake.

• We implemented ParkSense to autonomously identify
and navigate users to the parked location of their vehi-
cles. The ParkSense algorithm works without any train-
ing data.

• We evaluated the system in real world on different
mobile devices, operating systems and car models. The
system obtainedmore than 90% accuracy confirming the
feasibility of the approach.

The rest of the paper is organized as following. In the next
section, Section II, we discuss the background of electro-
magnetic field and magnetic field inside a car, and its appli-
cations. The system design, brake hitting detection algorithm
and device’s movement detection algorithm are detailed in
Section III and Section IV. Section V shows our evalua-
tion methodologies, implementation, and evaluation results.

We discuss the related work in Section VII and conclude the
paper in Section VIII.

II. BACKGROUND AND OBSERVATIONS
ParkSense relies on the magnetic field variation associated
with driver’s operating actions, such as hitting a brake, turn-
ing the car on and off, etc. When the action happens, the car
electrical system causes a certain magnetic changes which
can be sensed by magnetometer inside the mobile device.
In order to have a deeper understanding of the correlation
between the driver action and magnetic field changes, in
this section, we present the background of magnetic and
electromagnetic field in both general and that in in-vehicle
environment. We then discuss our observations on special
characteristics of the in-vehicle magnetic field.

A. FUNDAMENTAL OF IN-VEHICLE MAGNETIC FIELD
Amagnetic field is the magnetic influence of electric currents
and magnetic materials. A magnetic field can be produced by
either an electrical charge in motion or a permanent magnet.
In the former case, it is found that when the electrical charge
is in motion, there exists an additional force on the charges
that does not appear when the electrical charges are at rest.
This additional force, called magnetic force, generated by the
presence of the magnetic field in the environment [23]. In the
latter case, when there is no moving charges, the magnetic
field comes directly from the atoms - from electron spin and
orbital states [24]. For in-vehicle environment, there exists a
magnetic field generated by both sources. As the magnetic
field created by permanent magnet is consistent overtime,
we can consider these magnetic field is noise. Note that the
electrical and electronics circuits and wires are distributed
around the car body, especially at the engine location. The
magnetic field changes in the environment is dominant by the
charges running in those wires/circuits. In this work, we focus
on monitoring the patterns of such magnetic fields changes to
identify different stages of the vehicles.

To summary, the electrical and electronic components
inside a vehicle are the main sources of in-vehicle magnetic
field variations. Let’s discuss a few common sources. The
magnetic field variations can be generated by the vehicle tires,
engine stages, car types, user’s movement, location or actions
(hit-braking). First, tires are a large contributor to the mag-
netic field inside a car due to the permanent magnetism in the
radial steel bands within the tire [25], [26]. Themagnetic field
variations from the tires create high magnetic field surges
in the driver or co-driver’s foot regions. Second, the starter
motor and cables cause a high surge in magnetic field when
the engine is started. When the user accelerate and decelerate
the vehicle, the magnetic field is also changed significantly.
Third, different types of car creates different magnetic field
variation level [27]. The smaller the car, the higher magnetic
field are likely to be captured since the engine is closer
to the driver. Forth, different position inside the car can
lead to different magnetic field levels. The magnetic field
levels are likely to be higher in the front than in the back.
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FIGURE 1. Using a smartphone to sense the magnetic field generated by car and the magnetic readings inside an operating car with some
brake-hitting actions. (a) Example illustrating the magnetic field variation around the car body and the phone-based magnetic field variation
monitoring. (b) Magnetometer reading from a phone when the car is turned on and turned off. (c) The spectrogram of in-car magnetic field when
there is a brake event.

Fifth, user’s actions when driving can introduce very high
magnetic field variations as well. However, these variations
are much smaller than that of magnetic field changes created
by the engine. Last but not least important, brake-hitting
actions, especially with ABS (Anti-lock Braking System),
can also produce high surge in magnetic fields variation.

B. OBSERVATIONS OF IN-VEHICLE MAGNETIC FIELDS
Understanding above fundamental characteristics of the mag-
netic field of in-vehicle environment, we conduct a set of
experiment to validate them. We used smart phone Samsung
Galaxy S5 to perform hundreds of magnetic field measure-
ments inside different types of vehicles including cars, buses
and light-rails (train).We found that the in-carmagnetic fields
show some special characteristics and those characteristics,
as we will present later, can be utilized to determine the states
of the operating car.

Figure 1a illustrates an example of using a smartphone
to capture the car magnetic field. The embedded sensors
inside the smartphone is used to capture the magnetic field
variations generated by different sources inside the car. All
of the six sources mentioned above creates the variations
in magnetic field that are observable by the mobile phone’s
sensors. However, we are interested in capturing the magnetic
field variations created by different user actions. We found a
high correlation between user’s actions (or the stages of the
car) and the variations in magnetic field. More specifically,
Figure 1b shows the magnetometer reading on x-axis when
the car is traveling in a straight route and the phone is placed
in the driver seat. The magnetic field is recorded starting from
when the car is turned on until it is turned off. During the
drive, the car is braked three times. As illustrated in the figure,
the user actions of turning on/off the car and braking generate
surges in the magnetic reading strength. Interestingly, if the
phone is placed in other positions inside the car, such as
co-driver’s seat, backseat, no similar surges is registered on
the sensor readings. Also, as the experiment was repeated,
we found that the surge caused by the action of turning on/off
the car are not really consistent, i.e., the sensor can only
capture this type of surge in some of the tests. Meanwhile,
the surges generated by brake-hitting actions can always be

captured. We consider the results of these experiment as a
key motivation to develop a new system that can detect the
parking location based on the brake-hitting actions of the
users.

Moreover, the magnetic field is also appeared at different
range of frequency [25]. We validate this idea by analyzing
the magnetic field readings obtained from the phone’s sensor
at the frequency domain. It is proved that the brak-hitting
event is also captured by observe the signal at frequency
domain. Figure 1c shows the spectrogram of the magnetic
field inside the car when the brake is hit and then released.
As can be seen, the magnetic field inside car is mostly at
the low frequency range (less than 10Hz) with low power
distribution as well. It also implies that detecting the brake-
hitting event on frequency domain is very challenging as the
difference on power distribution of the surge and noise floor
is too small.

III. SYSTEM OVERVIEW
We present an automatic parking positioning system, namely
ParkSense. ParkSense benefits from the fact that common
driver actions trigger electrical systems in the car, leading
to the aforesaid variation in measured magnetic fields. This
enables automatic logging of parking location without requir-
ing any additional hardware. While existing approaches rely
on hardware add-ons (e.g. OBD and Bluetooth [2], [3], [5],
[6], [28]) for detecting driver actions, ParkSense eliminates
the need for any additional hardware by utilizing the mag-
netometer on the smartphone for parking detection. Through
our evaluation, ParkSense obtains high performance across a
diverse set of smartphones and cars in the real world. Also,
ParkSense consumes less energy than existing applications
that need to check GPS signal frequently.

A. CHALLENGES
The utilization of magnetometer and inertial sensor data
in a moving vehicle is acutely affected by several factors.
Let’s discuss some key factors as below:
• Phone orientation. Magnetometer readings exhibit
sharp variation with sudden changes in phone orienta-
tion. Noisy measurements can mask the brake-hitting
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event that we are interested in. To overcome this chal-
lenge, we develop a conversion method to fix the
coordinate system of the sensor readings (e.g., Earth
Coordinate System) (Section IV-A).

• Indirect informing vehicle stages from user actions.
To capture the parking event, we identify the combi-
nation of different user actions including brake-hitting,
and leaving vehicle to detect the parking event. So, it is
important to capture the movement when the user takes
the phone and moves out the vehicle. We detect this
event by analyzing the phone orientation and velocity
using IMU data. (Section IV-B, IV-C, IV-D).

• Tracking user’s vehicle but not bus or train. The
mobile phone might be placed inside different types of
vehicles such as car, bus, light-rail or even subway. The
phone needs to know when to turn on the its positioning
algorithm to store the parking location of the user’s
vehicle. We develop a detection algorithm to identify
whether the phone is inside a tracking vehicle or not by
recognizing the patterns of the magnetic field variations
at different types of vehicles (Section IV-E).

B. PROPOSED SYSTEM
We design a set of algorithms allowing ParkSense to
addresses above challenges. We outline the overview of Park-
Sense system as in Figure 2. ParkSense constitutes an Phone
Pose Estimation module to sense if the user is in a vehicle,
followed by In-Car Verification to ensure that the user is
driving her/his vehicle (she/he is not in a train). Once the
system has determined that the smart phone user is indeed the
driver, it detects brake-hitting events using the smart phone
magnetometer (applying Brake-Hitting Detection algorithm)
to monitor user braking behavior and find the last brake
before user changes to parking mode. Then, ParkSense tracks

FIGURE 2. System overview.

the walk-away movement by a Phone-Picking-Up Detec-
tion algorithm. Once the parking and walk-away events are
detected, the user location at this instance is recorded as the
car parking location.

We define three main states of the phone including
stay_still, in_vehicle and on_hand where the phone is placed
inside the vehicle and carried by user, respectively. When the
Phone Pose Estimation component detects that the device in
the vehicle or not (in_vehicle state), the In-Car Verification
component will be activated to identify whether the device
is in the car or on the train. If it is confirmed that the device
is in car, the Brake-Hitting Detection (BHD) component is
triggered. This component is designed to detect the brake-
hitting event signature in the data sequence. When a brake
is detected successfully, two components - Phone-Pick-Up
Detection (PPD) and Probabilistic Parking Estimation - are
activated. The Phone-Pick-Up Detection component is for
determining the moment the driver parks and gets out of the
car. When a Phone-Pick-Up event is found, the GPS location
is recorded. Importantly, ParkSense will only register this as
the parking location after the device changes its state from
in_vehicle to on_hand (the driver leaves the vehicle) within
a specific time window using Car-Leaving Detection. The
Probabilistic Parking Estimation component is designed to
address the problem that the BHD component is unable to
detect the last brake-hitting event for parking or the PPD
algorithm does not identify the phone-pick-up action. In this
case, the position that our ParkSense records is the coordi-
nates where the phone changes its state to on_hand .

1) PHONE POSE ESTIMATION
It is important to clearly define when to start and stop collect-
ing data from sensor due to limitation of storage and energy
on the mobile device. To implement this requirement, we
adopt existing solutions, i.e., Activity Recognition
API on Android OS and CMMotionActivity on iOS. We
want to take advantage of these optimized solutions to reduce
phone’s processing power and storage memory. The energy
consumption and resources usage for each state depend on
optimization of the provided API. Note that the processing
power and storage energy are proportional to the processing
delays. Table 1 shows the delay of each state, which can
be used to identify the power consumption as well storage
memory required.

TABLE 1. Average delays (in seconds) of the state transitions by Activity
Detection APIs, where S, INV , ONH stand for stay_still , in_vehicle,
on_hand state of the device.

2) IN-CAR VERIFICATION
In large cities, the metro system is an important public
transportation. These electrically operated vehicles, while
in operation, generate similar magnetic surges to those in
personal vehicles. Thus it is necessary to differentiate
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between riding the metro and driving a car. Through experi-
ments, we found that the surges of magnetic field inside the
train have bigger variances than those in cars. Understand
this characteristic, we adopt Dynamic Time Warping [29]
to measure the difference of a selected magnetic sequence
with ones from each vehicle. If the difference is lower than
a specific threshold (0.8 out of 1 in this case), the phone is
determined to be on car and vice versa.

3) BRAKE-HITTING DETECTION
To detect the brake hitting events for inferring user’s behavior,
ParkSense needs to remove unwanted magnetic surge caused
by phone’s movement our approach. To solve this problem,
we propose to use the data collected from accelerometer
and gyroscope to isolate unwanted device movements. After
removing unwanted surges from the magnetic field data,
we normalize the data by using the approximate derivative
method. The derivation of the magnetic field data helps to
remove most noises from sensor measurement.

4) PHONE-PICK-UP DETECTION
To store the parking location, we design a mechanism to
trigger the GPS properly. Note that a wrong trigger would
not only create in accurate of parking location detection but
also waste energy of retrieving GPS data. We observe that
when the driver walks out of the car and pick-up the phone,
a distinct signal is registered on accelerometer’s readings.
We can take advantage of this to trigger the GPS to save the
parking location.

5) PROBABILISTIC PARKING ESTIMATION
We employ the Bayesian probabilistic model to classify who
is the phone’s holder: the car driver, the passenger on a car
or the passenger on a bus. Given the observations that some
brake-hitting actions are detected, the model computes the
probabilities of each case. Assume that the driver is identified,
our system can always record the position of the driver when
the phone changes its state from on_vehicle to on_hand
(the phone now knows that the user is using his vehicle).
According to our observation and experiment results, using
this position as the car parking position, we obtained less
accuracy ratio than the position at which the phone-pick-up
is detected.

IV. THE PARKSENSE SYSTEM
A. PHONE POSE ESTIMATION
Most of the today’s smartphones equip with an inertial sensor
which normally outputs data including acceleration at from
its Accelerometer, angular rate wt from its Gyroscope, Earth
magnetic field ot from its Magnetometer, and quaternion qt .

The Inertial’s quaternion is a vector qt (x, y, z,w), and the
conjugation (qt )∗ of the qt is a vector obtained as follows:

(qt )∗ = (−qt (x),−qt (y),−qt (z), qt (w)). (1)

The Euler angles of rotation, Roll (αt ), Pitch (β t ) and
Yaw (γ t ) rotate along the X ,Y ,Z axis, respectively, and they

can be obtained as follows:αtβ t
γ t

 =
f1(qt (x))f2(qt (x))
f3(qt (x))

 (2)

where,

f1(qt ) = atan2[2(qt (x)qt (y)+ qt (z)qt (w)),

1− 2((qt (y))2 + (qt (z))2)],

f2(qt ) = arcsin[2(qt (x)qt (z)− qt (w)qt (y))],

f3(qt ) = atan2[2(qt (x)qt (z)+ qt (y)qt (z)),

1− 2((qt (z))2 + (qt (w))2)].

The local velocity of the phone motion in its body frame can
be obtained as follows:

vt =
∫
atdt. (3)

From (3), we can compute the local position of the phone
by taking the integral of vtb. However, we are interested in
localizing the phone in the global Earth coordinate system
such as theNorth East Down (NED) system [30], [31]. Hence,
we can obtain the acceleration of the phone motion in the
NED system as:

atNED = qt · at · (qt )∗. (4)

Then the real motion of acceleration in the NED system can
be obtained as follows:

atNED = ate − ge, (5)

where the ge is the gravitational acceleration vector:

ge = (0.0, 0.0, 9.8m/s2).

Similar to Equ. (3), the velocity of the phone motion in the
NED system can be obtained as follows:

vtNDE =
∫
atNDEdt. (6)

From Equ. (6), 3D position of the phone motion in the NED
system in real-time can be obtained as follows:

pt =
∫
vtNEDdt. (7)

The phone localization (7) may return accumulative errors
along the travel. We can combine with the GPS and human
foot or car motion model via Extended Kalman Filter (EKF)
to improve the accuracy even in GPS outage environ-
ments [32], [33].

B. BRAKE-HITTING DETECTION ALGORITHM
Our Brake-Hitting Detection Algorithm aims to correctly
detect the moment when the driver hits the brake using the
change in magnetic field caused by the action. As men-
tioned, the magnetic strength (measured at the driver seat
area, inside a running car) surges when the brake is pressed.
However, sudden movements of the phone can also cause
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similar magnetic surge to happen. To solve this prob-
lem, we use the approximate derivative method which is
normally used to measure the variations of discrete sig-
nals. For the outputs to be independent of the phone’s
orientation, we combine the derivatives of all three axes,
i.e., |diff mag| =

√
diff 2magx + diff

2
magy + diff

2
magz . Where,

diff magx =
magx (t)−magx (t−1)

1t
, diff magy =

magy(t)−magy(t−1)
1t

,

and diff magz =
magz(t)−magz(t−1)

1t
, and the sampling interval,

1t , is selected empirically.
To detect those surges, we compare the derivative value

outputs diff mag with a threshold. If any output surpasses
this threshold, our algorithm will count the data sample
corresponding to that output as a signature of one brake-
hitting event. We apply this technique for a sequence of
magnetic data collected in a driver-seat area inside our
Toyota Camry 2000 with smart phone Samsung Galaxy S5.
As shown in Figure 3, a surge at second 65th corresponds to
the moment that the driver pressed the brake of the car.

FIGURE 3. An example of approximate derivative calculation for magnetic
sequence in our Toyota Camry 2000 with one brake-hitting event.

There are three problems with using the approximate
derivative method to detect the magnetic surges. Firstly, there
can be a burst of surges in magnetic strength due to the
phone shaking when the brake is engaged. As can be seen
in Figure 3, there are two surges with magnitude 18µT
(at the second 65th) and 6µT (at the second 70th) close
together that match with one brake-hitting event. Secondly,
device movements such as tilt, shake, rotation, or swing
also produce sudden magnetic changes. Thirdly, because this
threshold depends on the accuracy of the phone’s magne-
tometer and the strength of electrical currents inside the car,
it must be dynamically set.

To address the first problem, we count a burst of surges
within a time frame as a one surge to match with one brake-
hitting. This time frame is started from the first detected
surge and lasts for few seconds. For the second problem, we
apply a technique to smooth out the magnetic reading, i.e., to
remove the data sections resulted by some unwanted device
movements. The technique computes the values of phone’s
gyroscope and accelerometer readings. Whenenver the gyro-
scope and accelerometer readings are both greater than a

set of pre-determined thresholds, our technique removes that
corresponding magnetic data section. For the third problem,
we choose the threshold by an algorithm called Threshold
Learning Algorithm (TLA).

More specifically, TLA runs once before the ParkSense
application is used in the smartphone. The driver puts the
phone in the driver area and drives the car in a smooth
and straight route. From the start to the end, he creates N
brake-hitting events. He enters this number into the app. TLA
computes the derivative of the obtained magnetic sequence.
It sets a large threshold value and then reduces this value
gradually until it counts N brake-hitting events. It reduces
thresholdmore until it countsN+1 brake-hitting events. TLA
takes the average of those two found values as a threshold that
is used for the whole program lifetime (assume that the car is
still the same). For example, in Figure 4 (Middle), there are
6 brake-hitting events and the threshold is found at 10 µT
by LTA.

FIGURE 4. An experiment with Honda Accord 2003: the BHD algorithm
removes the data section in which the phone is shaken while keeping the
surges representing brake-hitting events at second 1st , 24th, 46th, 66th,
and 80th.

The detail discussion is shown in Algorithm 1. The system
computes the gravity vector on three axes x, y, z by applying
Low-Pass Filter (LPF) to the raw accelerometer readings
(line 1). In line 2, the algorithm computes the magnitude
of the phone’s acceleration created by the user. Line 3, the
rotation rate of the phone around the Z axis of the earth
coordinates is found. The algorithm determines the combined
magnetic derivative on all three phone’s axes in line 4. Given
the acceleration and the rotation rate are both greater and pre-
set thresholds, the algorithm smooth out the corresponding
magnetic data section in lines 5 and 6. Otherwise, whenever
the derivative is greater than a threshold, thus a surge created
by brake-hitting action is found and the algorithm outputs the
time of the event in lines 7 and 8.

Figure 5 shows the output of our algorithm for a case the
phone is in the driver-seat and passenger-seat areas inside our
running car (Honda Accord 2003). The car was driven fol-
lowing a rectangular route. We plot five magnetic surges that
greater than the threshold value are presented the Figure 5a at
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Algorithm 1: Brake-Hitting Detection algorithm
Input: Realtime raw sensor readings including

magnetometer, gyroscope, and accelerometer
magraw, gyroraw, araw and magnetic, acceleration
and rotation threshold values: THM ,THA,THG
(obtained by TLA)

Output: Brake-hitting event Timestamp TBH
1 Use Low-Pass Filter to extract the gravity vector from
magnetometer readings gravity(x,y,z)← LPF(ax , ay, az)

2 Compute the acceleration of the device’s movement by
subtracting the fixed gravity: alinear ← araw − gravity
|ausr | ←

√
a2linearx + a

2
lineary + a

2
linearz

3 Calculate the direction Z of the gravity vector and the
device’s rotation rate around that vector:
unitz← gravity(x,y,z) rrz← gyroraw ∗ (unit

T
z ∗ unitz)

4 Get the combined derivatives of the raw magnetometer
readings on all three axes:
diff mag(x,y,z) ← magraw(x,y,z)(t)− magraw(x,y,z)(t − 1)

|diff mag| ←
√
diff 2magx + diff

2
magy + diff

2
magz

5 if |ausr | > THA ∧ |rrZ | > THG then
6 Smooth out the magnetic surges created by

unwanted device movements: |diff mag| = 0

7 if |diff mag| > THM then
8 Detect a brake-hitting even if there is a surge:

TBH ← tcurrent

second 10th, 24th, 45th, 63th and 85th corresponds to 5 brake-
hitting events. The last brake-hitting event indicates that the
driver stopped and parked the car.We omit the engine’s turned
off event in these figures. On the other hand, Figure 5b shows
the data for the passenger-seat area. In this case, there isn’t
any spike of magnetic data that is higher than the threshold.
Note that fine-grained localization to identify the location
of the phone inside a car is not needed. We only need to
implement a simple binary classification algorithm to identify
whether driver or passenger is using the phone. In addition,
implementing fine-grained localization requires more com-
putational cost as well as power consumption. In short, we
want to implement a simple solution but yet sufficient to solve
the problem.

In another testing, we let the driver shake the phone inten-
sively within a few seconds while driving. As shown in
Figure 4, the magnetic readings have big variations at the
time frame from second 34th to 38th that correspond with
the period the driver shakes the phone. Our Brake-Hitting
Detection algorithm is able to remove this magnetic data
section so that the output does not indicate the surge in that
time frame as a brake-hitting event.

C. PHONE-PICK-UP DETECTION (PPD) ALGORITHM
When the driver stops the car then walks out of the car with
a phone in his/her hand or pocket, the built-in accelerometer

captures the acceleration of the device’s movement. We call
this movement as phone-pick-up movement and we are inter-
ested in an approach to detect that action. We quantify the
action in a simple way to compute an approximate value of
the acceleration. Assume that it takes a period of time1t for
the driver to get out of the parked car and S is the distance the
phone is moved from a place inside the car to out of the car,
the acceleration of the device can be computed approximately
as: |a| = (2 ∗ (S/2))/1t2 = S/1t2.
This acceleration depends on how quickly the driver gets

out of the car, the height of both the car and the driver. Figure 6
illustrates a simplified phone movement out of the car. In the
first and second half of the movement, the phone has accel-
eration vector−→a and

−→
−a, respectively. More specifically, the

magnetometer reading on the acceleration axis varies from
0(m/s2) to 0.4(m/s2) and then from −0.4(m/s2) to 0(m/s2).
In our algorithm, we use 0.2(m/s2) as the threshold.
PPD, as presented in Algorithm 2, utilizes only accelerom-

eter readings to identify this action. More specifically, the
algorithm isolates the fixed component of the acceleration
vector, while computing the acceleration on the Z axis.
Within a time frame [TBH ,TBH+δ], if themaximumvariation
of accelerometer readings are larger than a desired threshold,
the algorithm will decide that this event is a phone-pick-up
event. Note that the variation is calculated from amaximum to
a minimum obtained accelerometer readings, consecutively.

Algorithm 2: Phone-Pick-Up Detection Algorithm
Input: Realtime raw accelerometer readings accraw;

time window size [TBH ,TBH + δ]; and
acceleration threshold value THPPU

Output: Phone-Pick-Up Event Timestamp TPPU
1 Use Low-Pass Filter to extract the gravity vector from
magnetometer readings: gravity(x,y,z)← LPF(ax , ay, az)

2 Compute the acceleration on Z axis of the device’s
movement by subtracting the fixed gravity:
alinear ← araw − gravity; unitz← gravity(x,y,z);
az← araw ∗ (unitTz ∗ unitz)

3 Find maximum and minimum acceleration values on Z
axis in the time window: Find maxaz[TBH ,TBH+δ]; Find
minaz[TBH ,TBH+δ]

4 if ((maxaz − minaz ) > THPPU ) ∧ (indexmax > indexmin)
then

5 Output the current time TPPU ← tcurrent

6 return TPPU

D. PROBABILISTIC PARKING EVENT ESTIMATION
To further improve our algorithm, we develop a probabilistic
parking event estimation model. Let P(DS), P(PS), and P(B)
denote belief probabilities that the device is in the driver-
seat (DS) area in cars, in the passenger-seat (PS) area in
cars, and on the bus. We are interested in finding the prob-
ability that the phone is in the driver-seat area given some
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FIGURE 5. Experiments with Honda Accord 2003: Magnetic strength and its derivative on the driver-seat and passenger-seat area. The
signals respect to the threshold (the solid bold line). (a) Driver-seat area. (b) Passenger-seat area.

FIGURE 6. A simplified phone movement out of car and its acceleration
measured on one axis by the accelerometer of the phone.

observations of NS magnetic surges.

P(DS|NS ) =
P(NS |DS)P(DS)

P(NS |DS)P(DS)+ P(NS |PS)P(PS)

Given the priori probabilities for the devices P(DS),
P(PS), and P(B), by comparing the posteriori probabilities.
If P(DS|NS ) > P(PS|NS ) and P(DS|NS ) > P(B|NS ), the
divice is in the driver-seat area. Once the device position in
cars is identified, the moment when the state of the device
changes from IN_CAR mode to ON_FOOT mode is the
parking moment and the GPS ouputs will be recorded.

E. IDENTIFYING ON_TRAIN STATUS
We use the Dynamic Time Warping algorithm (DTW) to
distinguish on_train status and on_vehicle status. The current
approach is to calculate the DTW for the signals that obtained
when the user is on the light rails or on the car. The referenced

point is decided through experiment. In our scenarios, we col-
lect the signal from both light rail and cars. The reference
signal is achieved when we run algorithm to identify the
value that could separate the two data set precisely. Again, we
avoid to use machine learning or other complicated solution
to reduce the computational cost and energy consumption.
The results show that finding the references from the data set
is sufficient for all scenarios.

FIGURE 7. DTW distance between a reference sequence and the
sequences by on_train status is much bigger than one by on_vehicle
status.

The DTW algorithm is designed to measure the minimum
distance between two given sequences of signal data [29].
This minimum distance indicates the alignment of two
sequences: the smaller the distance is, the more similar the
two sequences are. In particular, we compare the distance of
one selected reference sequencewith the derivative sequences
of the raw magnetic data measured on cars and on light rails.
In our Parksense system, we select one sequence diffmagref
of on_vehicle magnetic data as a reference sequence.
Figure 7 illustrates that the distances of the referenced
sequence diffmagref with the on_train magnetic data is much
bigger than the on_vehicle magnetic data.
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FIGURE 8. Phone’s position inside the car.

V. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
We perform experiments using three different phones:
Samsung Galaxy S5, LG G3, and iPhone 6 on several cars:
Toyota Camry 1999, Toyota Camry 2005, Honda Accord
2003, and Solara Coupe 2004. The phone is placed in differ-
ent places inside cars: driver seat, co-driver seat and backseat
(Figure 8). Testing is done in different parking locations and
routes in Denver, CO, U.S. The experiment was conducted on
a limited number of cars due to the available of our current
resource. However, we believe that the system works across
different type of cars. We aim to conduct experiment later
on electric cars, we think that ParkSense would obtain even
higher accuracy due to the increase of magnetic field sources.
We evaluate our ParkSense in these following test cases:

1) TEST CASE #1
We test our system in the driver-seat area of different cars
with different phones as mentioned above. In this scenario,
we are interested in measuring the accuracy of the ParkSense
system to correctly detect the parking event given the driver
having the phone, by the following formula: accuracy =

TP+TN
TP+TN+FP+FN , where TP, TN , FP, and FN represent the
number of true positives, true negative, false positive, and
false negative.

2) TEST CASE #2
In this scenario, we consider the cases in which the passenger
has the phone and the ParkSense system should not be able
to detect the parking events. In other words, the metric to
measure in this scenario is the accuracy of ParkSense that
does not detect the parking event. We use the same formula
above to evaluate our system.

3) TEST CASE #3
The system is tested on buses and light-rail. Similar to test
case #2, the ParkSense system should not be able to detect
the parking or stopping events of the vehicle, i.e., the bus or
light-rail.

Testing is done for more than 200 tests with a total of more
than 150 miles of driving both on highway and in-town. For
each session, the driver hits the brake pedal at the stop signs,
the red traffic lights, the turning points (i.e, left turn, right
turn, or U-turn), and the parking spot. The parking moment
is when the driver hits the brake to stop the car, turns off the
car, picks up the phone and walks out of the car.

B. RESULTS EVALUATION
1) DETECTION ACCURACY
For test case #1, the accuracy of the ParkSense system in
detecting the parking event is presented in Figure 9. Results
show that ParkSense works well with the accuracy rate
around 90% for different types of cars and phones. The cases,
in which the system failed, are either because ParkSense
misunderstood a temporary stop as a parking event or because
ParkSense does not detect the parking event. Even though
we only have chance to thoroughly evaluate our system with
some four different models as above. The similar results
of experiment are obtained with a short distance test on
Lexus ES 300 and another Toyota Camry. In addition, as
most of Samsung phone use the same compass sensor (e.g.,
Yamaha YAS532B [34]), the similar results are expected to
obtain with other mobile phone’s model that use the same
sensor chip.

FIGURE 9. Accuracy of correctly detecting the parking events for test
case #1.

For test case #2 and #3, we have the results presented
in a common Table 2. ParkSense performs more than 90%
accuracy in average. The experiment are conducted with
4 different light rail lines C,D,F,H [35] starting from
Denver downtown, Colorado, U.S. The phone we use to test
in both scenarios is Samsung Galaxy S5. The inaccuracy
of ParkSense in these cases are due to the similarities in
magnetic strength variances of the train during some of the
route sections. Because of this, the DTWmethod is unable to
distinguish whether the passenger is in a car or on a train.

TABLE 2. Testing results of the Parksense system in the scenarios that
does not need to record the vehicle’s parking positions.

2) ESTIMATION DELAY
We are also interested in estimating the delay from the actual
time that the car is parked until ParkSense registers the park-
ing event. Figure 10 shows the delays in test cases using
Samsung Galaxy S5 on Honda Accord 2003 and Toyota
Solara 2004. As can be seen in this figure, the average delay
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FIGURE 10. ParkSense time delay from actual parking time.

for Toyota Solara is usually less than that of Honda Accord.
From the results of our experiment, as Toyota Solara emits
more electromagnetic signal than Honda Accord, ParkSense
takes less time to detect the signal from Toyota vehicle.

3) SENSITIVITY ANALYSIS
As Brake-Hitting Detection Algorithm is considered as the
core component in our design for detecting parking event. We
conduct an analysis on the detection accuracy of this method.
Two phones (Samsung Galaxy S5 and iPhone6) are used to
test on Toyota Solara 2004, two Toyota Camry (1999, 2005).
Galaxy S5 can detect up to 99% the number of the brake-
hitting event while iPhone 6 can detect up to 95%. Note
that the performance of other components inside ParkSense
such as Phone PoseDetection, In-car Verification, and Phone-
Picking-Up Detection are also very reliable. They contribute
to the high overall performance of the system as presented
earlier.

4) ENERGY CONSUMPTION
We conduct experiment to evaluate the energy consumption
of ParkSense and compare with another automatic parking
locator application - Google Now (Launcher) on Samsung
Galaxy S5. Figure 11 shows the distribution of power
consumption of two applications, where EGN , EParkSense,
EDefault represent the total energy consumed by Google Now,
ParkSense, and default applications running on the device,
respectively. The experiment duration is 15 minutes and
the sampling interval is 0.2 milliseconds. Even though

FIGURE 11. Energy consumed by ParkSense and Google Now Launcher.

Google Now consumes less energy by running as a back-
ground service, it always requires GPS data for localization
function. Google Now also needs to access data network
(via WiFi/LTE/3G) to connect to server in order to response
to user’s requests, which consumes Eupdate = 38.82
J. ParkSense, on the other hand, only needs GPS informa-
tion for the last minute (requires EGPS = 7.39J) to acti-
vate its localization feature without accessing to the internet.
The power consumption is measured using Monsoon power
monitor [36]. We then calculate the energy consumed by
those applications. The results of our experiments show that
ParkSense consumes only 110.06J, while Google Now con-
sumes 114.47J after the same amount of time. Meanwhile,
Samsung Galaxy S5 requires 106.39J (EDefault) to run its
default applications and services. Therefore, as a result, the
Google Now consumes 1.83 times more energy compared to
ParkSense. In short, ParkSense consumes much less energy
compared with state-of-the-art approach, Google Now, due to
its simplicity. The mobile device doesn’t need to run power
hungry user interface with real-time internet connectivity.
ParkSense utilize the sensor reading on the mobile device and
run on the background to compute the parking location.

VI. DISCUSSION
A. ACQUIRING LOCATION
As mentioned in Section I, ParkSense relies on the ability to
acquire the current location of the mobile device at parking,
either through GPS for outdoor environment or other indoor
positioning systems. While we can certainly remove this
assumption by integrating an existing positioning system into
ParkSense, such as usingWi-Fi finger printing positioning for
indoor environments, it is not within the scope of this work.

B. IMPACT FROM ENVIRONMENT NOISES
Technically, the compass readings may be affected by dif-
ferent noise sources such as earth’s magnetic field or a loud
speaker inside a car. However, the magnetic field noise from
environment is usually less than 4µT and the signature of
the magnetic signal generated by the car engine is very dis-
tinct, as reported in Figure 7, the noise doesn’t affect to the
performance of the system. Moreover, the magnetic readings
may also be affected from a loud speaker which is operated
by vibrating a magnet coil. However, because the vibration of
themagnet coil inside a speaker is operating at high frequency
(in 10s kHz range) and the car’s magnetic signature is gener-
ated at low frequency (less than 1Hz), the noise from speaker
doesn’t affect to the robustness of ParkSense.

C. OTHER APPLICATIONS
We observed that the magnetic field signal is sensitive to its
location inside the car. Hence it could be used for in-car local-
ization without any additional hardware component. This
application is useful to detect and possibly prevent the use of
mobile devices by driver while driving. Furthermore, because
the magnetometer, gyroscope and accelerometer consume
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the least amount of energy compared to alternative sensors
such as location sensors (i.e. GPS) or camera, this approach
promises the minimum energy usage.

Another possible application leveraging in-vehicle mag-
netic field variation is for safety reminder for driver when
driving. An example of such applications is having an appli-
cation that reminds users of what to do after a certain action
inside the car. For example, the application would remind the
user to turn his head to check for blind spot after turning on
the turning signal; or remind the user to lock the car after the
car is parked.

VII. RELATED WORK
A. PARKING POSITIONING
Parking location saving application for smartphones have
attracted much attention nowadays. The most common
approach of these applications is to have user manually
saving the parking position by pressing a button [2], [28],
shaking the phone [3], or taking a picture of the parking
position [4]. These all require users’ actions, and therefore,
become ineffective if users forget to do the required actions.
Another approach is to memorize the parking location when
the phone’s Bluetooth is disconnected [5], [6]. This, how-
ever, either requires users to connect the phone to the car
or purchase additional hardware. Recently, Google released
Google Now application [7] with the feature of automatically
saving parking positionwithout any requirement or additional
hardware. The idea behind this is to detect the user’s action of
leaving a parked vehicle; however users still have to manually
change the mode of operation to car in order for the app to
correctly save the parking position of the car.

B. IN-CAR POSITIONING
Distinguishing the driver with the passengers is important
to estimate the proper parking location. There are some
techniques to distinguish drivers and passengers that have
been presented recently by using stereo infrastructure [37],
exploiting accelerometer information with [38], or uti-
lizing a fusion of embedded sensors [39]. In addition,
Chandrasekaran et al. [40], [41] present a technique to obtain
the mobile speed. This information together with the floor
plan of the parking space would be combined to approximate
the relative parking location.

C. DRIVER’S BEHAVIOR ANALYSIS
Towards the related work in detecting driver’s behavior,
phone’s sensors have been used extensively to analyze the
driving styles and behaviors [42]–[45] by observe the accel-
eration data. With ParkSense, we propose for the first time
a technique utilizing the information extracted from phones
magnetometer to detect the interested events from the car,
which goes beyond the traditional objective of mangetome-
ter (orientation estimation [46]). Following this direction,
magnetometer has been used to monitor the change in the
magnetic field to detect passing vehicles [47], or to recognize
human activities [48].

VIII. CONCLUSION
This paper presents an accurate and autonomous parking
positioning system called ParkSense that takes advantage of
the unique in-vehicle magnetic field signatures captured by
the integratedmagnetometer in today’s smart phones.We pro-
posed a set of algorithms and probabilistic model to overcome
challenges caused by the noisy environment inside vehicles,
the movement of the mobile device, and the movement of
the vehicle itself. We developed ParkSense app for Android
and iOS and evaluated it on real-world setting with different
mobile device hardware and platforms. Tested on different
car models and manufacturers, our results show the accuracy
of 90% in parking detection rate. ParkSense can differenti-
ate a user walking out of a bus from a driver that actually
parks his or her car then walks away, which is not possible
with existing motion-based technique, such as that found in
Google Now.

Since the magnetic field signature are correlated to the
position of the mobile device inside a vehicle and also tied
in with the driver behaviors, many potential applications can
be developed from this observation. For example, it can be
used for detecting driver’s phone use to prevent distraction
during driving, or reminding a driver what to do after a certain
action (e.g. reminding the driver to turn his head to the right
to check for blind spot after he signals for a right turn).
As another potential research direction, we can enable ‘‘car
identification’’ application since each car generates magnetic
field differently. However, given the inaccuracy of current
embedded-phone, the dedicated magnetometer is needed to
capture the signal at a greater details in order to realize the
idea. In addition, when the signal is captured with a higher
resolution, machine learning algorithm will be applied to
improve the performance of the parking position system. In
addition, wewill use ParkSense for electronic cars. ParkSense
would be more robust with electric cars because the magnetic
noises are easier to observed due to the large number of
electric components inside the car.

REFERENCES
[1] I. Inc Survey. (2017). Top Driving Embarrassments. Accessed:

Oct. 24, 2017. [Online]. Available: http://goo.gl/pSeDJj
[2] BitPedal. (2017). Parking Recall (Version 1.32). Accessed: Oct. 24, 2017.

[Online]. Available: http://goo.gl/Nepuaj
[3] E. Kim. (2017). Car Locator (Version 4.22). Accessed: Oct. 24, 2017.

[Online]. Available: http://goo.gl/umWz80
[4] eLibera. (2016). Find My Car. Accessed: Aug. 26, 2016. [Online]. Avail-

able: http://goo.gl/oBDUwQ
[5] Hexter Labs Software. (2017). Car Finder AR (Version 3.2.5). Accessed:

Oct. 24, 2017. [Online]. Available: http://goo.gl/DTR6Gr
[6] FMC. (2017). Find My Car Smarter. Accessed: Oct. 24, 2017. [Online].

Available: http://goo.gl/eRJWIU
[7] Google. (2017). Google Now. Accessed: Oct. 24, 2017. [Online]. Avail-

able: http://goo.gl/IkoqEv
[8] Google. (2017). Google Developers. Accessed: Oct. 24, 2017. [Online].

Available: http://goo.gl/2N6PyM
[9] Z. Yang, C.Wu, andY. Liu, ‘‘Locating in fingerprint space:Wireless indoor

localization with little human intervention,’’ in Proc. ACM MobiCom,
2012, pp. 269–280.

[10] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D.Wetherall, ‘‘802.11
user fingerprinting,’’ in Proc. ACM MobiCom, 2007, pp. 99–110.

VOLUME 5, 2017 25031



P. Nguyen et al.: ParkSense: Automatic Parking Positioning by Leveraging In-Vehicle Magnetic Field Variation

[11] J. Xiong, K. Sundaresan, and K. Jamieson, ‘‘ToneTrack: Leveraging
frequency-agile radios for time-based indoor wireless localization,’’ in
Proc. ACM MobiSys, 2015, pp. 537–549.

[12] Z. Zhang et al., ‘‘I am the antenna: Accurate outdoor ap location using
smartphones,’’ in Proc. ACM MobiCom, 2011, pp. 109–120.

[13] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and
M. Wiseman, ‘‘Indoor location sensing using geo-magnetism,’’ in Proc.
ACM MobiSys, 2011, pp. 141–154.

[14] S. Suksakulchai, S. Thongchai, D. M. Wilkes, and K. Kawamura, ‘‘Mobile
robot localization using an electronic compass for corridor environment,’’
in Proc. IEEE SMC, Oct. 2000, pp. 3354–3359.

[15] J. Haverinen and A. Kemppainen, ‘‘A global self-localization technique
utilizing local anomalies of the ambient magnetic field,’’ in Proc. IEEE
ICRA, May 2000, pp. 3142–3147.

[16] D. Navarro and G. Benet, ‘‘Magnetic map building for mobile robot
localization purpose,’’ in Proc. IEEE ETFA, Sep. 2009, pp. 1–4.

[17] S. Nirjon, J. Liu, G. DeJean, B. Priyantha, Y. Jin, and T. Hart, ‘‘COIN-GPS:
Indoor localization from direct GPS receiving,’’ in Proc. ACM MobiSys,
2014, pp. 301–314.

[18] O. Woodman and R. Harle, ‘‘Pedestrian localisation for indoor environ-
ments,’’ in Proc. ACM UbiComp, 2008, pp. 114–123.

[19] N. Agarwal et al., ‘‘Algorithms for GPS operation indoors and downtown,’’
GPS Solutions vol. 6, no. 3, pp. 149–160, Dec. 2002.

[20] G. Dedes and A. G. Dempster, ‘‘Indoor GPS positioning—Challenges and
opportunities,’’ in Proc. IEEE Semiannu. Veh. Technol. Conf., Sep. 2005,
pp. 412–415.

[21] F. van Diggelen and C. Abraham, Indoor GPS Technology. Dallas, TX,
USA: CTIA Wireless-Agenda, 2001.

[22] F. van Diggelen, ‘‘Indoor GPS theory & implementation,’’ in Proc. IEEE
Position Location Navigat. Symp., Apr. 2002, pp. 240–247.

[23] D. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd ed.
Boca Raton, FL, USA: CRC Press, 1998.

[24] G. L. Pollack and D. R. Stump, Electromagnetism. Reading, MA, USA:
Addison-Wesley, 2001.

[25] S. Stankowski, A. Kessi, O. Bécheiraz, K. Meier-Engel, and M. Meier,
‘‘Low frequency magnetic fields induced by car tire magnetization,’’
Health Phys., vol. 90, no. 2, pp. 53–148, Feb. 2006.

[26] S. Milham, B. J. Hatfield, and R. Tell, ‘‘Magnetic fields from steel-belted
radial tires: Implications for epidemiologic studies,’’ Bioelectromagnetics,
vol. 20, no. 7, pp. 440–445, 1999.

[27] A. Philips and J. Philips. (2014). Transport, Travel and EMFs. [Online].
Available: http://goo.gl/ap8ckf

[28] nomadrobot. (2017). MyCar Locator Free (Version 4.0).
Accessed: Oct. 24, 2017. [Online]. Available: http://goo.gl/Z7UidE

[29] E. J. Keogh and M. J. Pazzani, ‘‘Derivative dynamic time warping,’’ in
Proc. SIAM Int. Conf. Data Mining (SDM), 2001, pp. 1–11.

[30] G. W. Collins, II, The Foundations of Celestial Mechanics. New York, NY,
USA: The Pachart Foundation DBA Pachart Publishing House, 2004.

[31] X. Yun, J. Calusdian, E. R. Bachmann, and R. B. McGhee, ‘‘Estimation
of human foot motion during normal walking using inertial and mag-
netic sensor measurements,’’ IEEE Trans. Instrum. Meas., vol. 61, no. 7,
pp. 2059–2072, Jul. 2012.

[32] L. Van Nguyen and H. M. La, ‘‘Real-time human foot motion localization
algorithm with dynamic speed,’’ IEEE Trans. Human-Mach. Syst., vol. 46,
no. 6, pp. 822–833, Dec. 2016.

[33] H. M. La et al., ‘‘Mechatronic systems design for an autonomous
robotic system for high-efficiency bridge deck inspection and evalua-
tion,’’ IEEE/ASME Trans. Mechatronics, vol. 18, no. 6, pp. 1655–1664,
Dec. 2013.

[34] Yamaha. (2017). Yamaha YAS532B. Accessed: Oct. 24, 2017. [Online].
Available: https://goo.gl/uL4EY2

[35] Denver. (2017).Denver Light Rail Map. Accessed: Oct. 24, 2017. [Online].
Available: http://www.rtd-denver.com/LightRail_Map.shtml

[36] (2017). Monsoon Solution Inc. Accessed: Oct. 24, 2017. [Online]. Avail-
able: http://goo.gl/yHWK7t

[37] J. Yang et al., ‘‘Sensing driver phone use with acoustic ranging through car
speakers,’’ vol. 11, no. 9, pp. 1426–1440, Sep. 2012.

[38] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin, ‘‘Sens-
ing vehicle dynamics for determining driver phone use,’’ in Proc. ACM
MobiSys, 2013, pp. 41–54.

[39] H. Park, D. Ahn, M. Won, S. H. Son, and T. Park, ‘‘Poster: Are you driv-
ing?: non-intrusive driver detection using built-in smartphone sensors,’’ in
Proc. ACM MobiCom, 2014, pp. 397–400.

[40] G. Chandrasekaran et al., ‘‘Vehicular speed estimation using received
signal strength from mobile phones,’’ in Proc. ACM Ubicomp, 2010,
pp. 237–240.

[41] G. Chandrasekaran et al., ‘‘Tracking vehicular speed variations by warp-
ing mobile phone signal strengths,’’ in Proc. IEEE PerCom, Mar. 2011,
pp. 213–221.

[42] D. A. Johnson and M. M. Trivedi, ‘‘Driving style recognition using a
smartphone as a sensor platform,’’ in Proc. 14th Int. IEEE Conf. Intell.
Transp. Syst. (ITSC), Oct. 2011, pp. 1609–1615.

[43] J. Paefgen, F. Kehr, Y. Zhai, and F.Michahelles, ‘‘Driving behavior analysis
with smartphones: Insights from a controlled field study,’’ in Proc. ACM
MUM, 2012, pp. 36:1–36:8.

[44] H. Eren, S. Makinist, E. Akin, and A. Yilmaz, ‘‘Estimating driving behav-
ior by a smartphone,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2012,
pp. 234–239.

[45] J.-H. Hong, B. Margines, and A. K. Dey, ‘‘A smartphone-based sensing
platform tomodel aggressive driving behaviors,’’ inProc. ACMCHI, 2014,
pp. 4047–4056.

[46] S. Ayub, A. Bahraminasab, and B. Honary, ‘‘A sensor fusion method
for smartphone orientation estimation,’’ in Proc. 13th Annu. Post Grad-
uate Symp. Converg. Telecommun., Netw. Broadcast., Liverpool, U.K.,
Jun. 2012.

[47] S. Lee, D. Yoon, and A. Ghosh, ‘‘Intelligent parking lot application using
wireless sensor networks,’’ in Proc. IEEE CTS, May 2008, pp. 48–57.

[48] M. Zhang and A. A. Sawchuk, ‘‘A preliminary study of sensing appliance
usage for human activity recognition using mobile magnetometer,’’ in
Proc. ACM Ubicomp, 2012, pp. 745–748.

PHUC NGUYEN received the B.S. degree
from Vietnam National University in 2010 and
the M.S. degree in computer science from
Sungkyunkwan University, South Korea, in 2014.
He is currently working toward the Ph.D.
degree in computer science at the Univer-
sity of Colorado Boulder, Boulder, CO, USA.
His research interests include mobile com-
puting, mobile sensing, and wireless technol-
ogy. He received an Outstanding Graduate Stu-

dent award from the Department of Computer Science and Engineer-
ing, University of Colorado Denver, in 2016, and the Best Paper
Award at ACM MobiCom-S3 2016 and ACM SIGMobile Research
Highlights 2017.

HIEU NGUYEN received the B.S. degree in
telecommunication engineering from the Hanoi
University of Science and Technology, Vietnam,
in 2013. He is currently working toward the Ph.D.
degree at the DECENT Laboratory, Department
of Computer Science and Engineering, Univer-
sity of Colorado Denver, Denver, CO, USA. His
research interests include computer networks and
high speed communication system utilizing NFV
and SDN technologies.

DONG NGUYEN received the B.S. degree in elec-
trical engineering from the Hanoi University of
Technology, Vietnam, in 2000, the M.S. degree
in computer engineering from Yonsei University,
Seoul, South Korea, in 2005, and the Ph.D. degree
in electrical and computer engineering from
Oregon State University, Corvallis, OR, USA,
in 2009. His research interest is mobile computing,
mobile sensing, and wireless networking.

25032 VOLUME 5, 2017



P. Nguyen et al.: ParkSense: Automatic Parking Positioning by Leveraging In-Vehicle Magnetic Field Variation

THANG N. DINH received the Ph.D. degree
in computer engineering from the University of
Florida in 2013. He is currently an Assistant
Professor at the Department of Computer Sci-
ence, Virginia Commonwealth University. He has
authored or coauthored over 60 papers in confer-
ences and journals, including the top venues such
as SIGMOD, MOBICOM, INFOCOM, and the
IEEE TRANSACTIONS ON NETWORKING. His research
focuses on optimization and security challenges in

complex systems, especially social networks, and cyber-physical systems.
He serves as an Associate Editor of Computational Social Networks journal
and the Guest-Editor for Theoretical Computer Science and the Journal
of Combinatorial Optimization. He co-chaired COCOON and CSoNet and
served on TPC of several conferences, including the IEEE INFOCOM.

HUNG M. LA received the B.S. and M.S. degrees
in electrical engineering from the Thai Nguyen
University of Technology, Thai Nguyen, Vietnam,
in 2001 and 2003, respectively, and the Ph.D.
degree in electrical and computer engineering
from Oklahoma State University, Stillwater, OK,
USA, in 2011. From 2011 to 2014, he held a post-
doctoral position and then was a Research Faculty
member at the Center for Advanced Infrastructure
and Transportation (CAIT), Rutgers University,

New Brunswick, NJ, USA. He was a Key Team Member of the CAIT Team
that developed the Robotics Assisted Bridge Inspection Tool for the Federal
Highway. He is currently an Assistant Professor and the Director of the
Advanced Robotics and Automation Laboratory, Department of Computer
Science and Engineering, University of Nevada, Reno, NV, USA.

TAM VU received the B.S. degree in computer
science from the Hanoi University of Technology,
Vietnam, in 2006 and the Ph.D. degree in computer
science from WINLAB, Department of Computer
Science, Rutgers University, New Brunswick, NJ,
USA, in 2013. He is currently an Assistant Profes-
sor and the Director of the Mobile and Networked
Systems Laboratory, Department of Computer Sci-
ence, University of Colorado Boulder. He received
the Google Faculty Research Award in 2014 for

his work in Chrome browser authentication. He received the Best Paper
Award for inventing new form of communication, called capacitive touch
communication, at ACM MobiCom 2012. He was also a recipient of the
ACM MobiCom 2011 Best Paper Award for his work on driver phone use
detection. His research also received wide press coverage, including CNN
TV, The New York Times, The Wall Street Journal, National Public Radio,
MIT Technology Review, Yahoo News, among other venues.

VOLUME 5, 2017 25033


	INTRODUCTION
	BACKGROUND AND OBSERVATIONS
	FUNDAMENTAL OF IN-VEHICLE MAGNETIC FIELD
	OBSERVATIONS OF IN-VEHICLE MAGNETIC FIELDS

	SYSTEM OVERVIEW
	CHALLENGES
	PROPOSED SYSTEM
	PHONE POSE ESTIMATION
	IN-CAR VERIFICATION
	BRAKE-HITTING DETECTION
	PHONE-PICK-UP DETECTION
	PROBABILISTIC PARKING ESTIMATION


	THE PARKSENSE SYSTEM
	PHONE POSE ESTIMATION
	BRAKE-HITTING DETECTION ALGORITHM
	PHONE-PICK-UP DETECTION (PPD) ALGORITHM
	PROBABILISTIC PARKING EVENT ESTIMATION
	IDENTIFYING ON_TRAIN STATUS

	PERFORMANCE EVALUATION
	EXPERIMENTAL SETUP
	TEST CASE #1
	TEST CASE #2
	TEST CASE #3

	RESULTS EVALUATION
	DETECTION ACCURACY
	ESTIMATION DELAY
	SENSITIVITY ANALYSIS
	ENERGY CONSUMPTION


	DISCUSSION
	ACQUIRING LOCATION
	IMPACT FROM ENVIRONMENT NOISES
	OTHER APPLICATIONS

	RELATED WORK
	PARKING POSITIONING
	IN-CAR POSITIONING
	DRIVER'S BEHAVIOR ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	PHUC NGUYEN
	HIEU NGUYEN
	DONG NGUYEN
	THANG N. DINH
	HUNG M. LA
	TAM VU


