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Patients with respiratory diseases require frequent and accurate blood oxygen level monitoring. Existing tech-
niques, however, either need a dedicated hardware or fail to predict low saturation levels. To fill in this gap, we
propose a phone-based oxygen level estimation system, called PhOy, using camera and flashlight functions
that are readily available on today’s off-the-shelf smartphones. Since the phone’s camera and flashlight were
not made for this purpose, utilizing them for oxygen level estimation poses many difficulties. We introduce
a cost-effective add-on together with a set of algorithms for spatial and spectral optical signal modulation
to amplify the optical signal of interest while minimizing noise. A near-field-based pressure detection and
feedback mechanism are also proposed to mitigate the negative impacts of user’s behavior during the mea-
surement. We also derive a non-linear referencing model with an outlier removal technique that allows PhO,
to accurately estimate the oxygen level from color intensity ratios produced by the smartphone’s camera.

An evaluation on COTS smartphone with six subjects shows that PhO; can estimate the oxygen saturation
within 3.5% error rate comparing to FDA-approved gold standard pulse oximetry. In addition, our evaluation
in hospitals presents high correlation with ground-truth qualified by the 0.83/1.0 Kendall t coefficient.

CCS Concepts: « Human-centered computing — Mobile computing; « Hardware — Sensor devices and
platforms;

Additional Key Words and Phrases: Oxygen saturation, optical divider, near-infrared sensing, skin colour
compensation, heart rate variability, phone’s add-on, phone camera, SpOg2, peripheral capillary oxygen
saturation

This article is an extended version of the paper titled PhO;: Smartphone-based Blood Oxygen Level Measurement Systems
using Near-IR and RED Wave-guided Light, published in Proceedings of the 15th ACM Conference on Embedded Networked
Sensor Systems (SenSys’17).

This research is partially supported by the Schramm Foundation, the Colorado Advanced Industries Accelerator (AIA), and
U.S. National Science Foundation grant #1602428.

Authors’ addresses: N. Bui, A. Nguyen, P. Nguyen, H. Truong, and Tam Vu, University of Colorado Boulder, 1111 Engi-
neering Drive, Boulder, CO, 80309; emails: {nam.bui, Ahn TL.Nguyen, vp.nguyen, Hoang.Truong, tam.vu}@colorado.edu;
A. Ashok, Georgia State University, 25 Park Place, Atlanta, GA, 30301; email: aashok@gsu.edu; T. Dinh, Virginia Com-
monwealth University, 401 W. Main St., Richmond, VA, 3019; email: tndinh@vcu.edu; R. Deterding, Children’s Hospital
Colorado, 13123 E 16th Ave, Aurora, CO, 80045; email: Robin.Deterding@childrenscolorado.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1550-4859/2020/01-ART9 $15.00

https://doi.org/10.1145/3360725

ACM Transactions on Sensor Networks, Vol. 16, No. 1, Article 9. Publication date: January 2020.



mailto:permissions@acm.org
https://doi.org/10.1145/3360725

9:2 N. Bui et al.

ACM Reference format:

Nam Bui, Anh Nguyen, Phuc Nguyen, Hoang Truong, Ashwin Ashok, Thang Dinh, Robin Deterding, and Tam
Vu. 2020. Smartphone-Based SpO2 Measurement by Exploiting Wavelengths Separation and Chromophore
Compensation. ACM Trans. Sen. Netw. 16, 1, Article 9 (January 2020), 30 pages.
https://doi.org/10.1145/3360725

1 INTRODUCTION

Blood oxygen level, which is often indicated through oxygen saturation measurement (SpO;), has
long been recognized as an important indicator of patient’s wellbeing and extensively used for clin-
ical diagnosis [8, 23, 24, 35, 36, 60], owing to the critical role of oxygen in the operational functions
of vital organs and tissues. If the human body cannot exchange and deliver oxygen efficiently, the
amount of oxygen available for organs throughout the body becomes insufficient, which can lead
to long-term damage of individual cells, heart, brain, and the like or short-term malfunctioning
of other vital organisms [11, 33, 55]. Therefore, accurately measuring SpO, with high frequency
is critical to not only monitor the key organ’s well-being but also provide early warning signs of
abnormalities and potential health problems. There have been extensive literature and commercial
solutions both invasive and non-invasive to measure SpO,. Pulse oximetry is a common measure-
ment of SpO; for in-hospital and in-home environments. A typical noninvasive pulse oximetry
system requires a dedicated pulse oximetry hardware and software [3, 7, 13, 15, 16, 37, 41, 43, 48,
56, 62]. The device projects light beams at specific wavelengths deep into its users’ finger, toe, ear-
lobe, or other location. Lights hit dedicated photo-electrodes after penetrating through multiple
layers of skin, arteries, and blood cells. The electrodes are designed to receive only those within a
desired wavelength range. The intensity of the received light carries the information that can be
used to estimate the SpO; level of the blood cells that the lights have gone through [40]. While
the current SpO, measurement largely relies on these dedicated pieces of equipment owing to
their high accuracy and reliability, they have several undesirable features, especially for frequent
measurement. First of all, users need to acquire the device by purchasing it (directly or indirectly
through insurance or a doctor’s prescription). Second, these pulse oximetry devices require users
to carry the device with them for performing frequent measurements while they are doing every-
day tasks (as opposed to being in the hospital). This requirement often reduces the usability of
the devices since patients have tendency to forget their devices, fail to charge them, or misplace
them [34]. Moreover, with the current form factors (e.g., finger clip-on, earlobe clip-on, or finger
wrap-around), these devices do not always fit well on patients with different finger and earlobe
sizes. For example, a 5-year-old boy would have a very different finger size with an adult and also
have a different finger size when he turns 6. The ill-fitting of the device leads to significant esti-
mation errors [13]. With the advent of smartphones, most of which are equipped with flashlights
and cameras, many systems have been proposed using these functions to capture various blood
properties [14, 18-20, 61]. However, none of the existing technologies and systems has the ability
to accurately estimate SpO; by using built-in sensors in smartphones. For example, using exter-
nal light sources such as an incandescent light bulb or a group of LEDs, HemaApp [62] from the
University of Washington takes advantage of a clever machine learning technique to measure the
hemoglobin concentration using the phone’s camera. These additional light sources, however, are
not pervasive and have restricted usage in modern smartphones, in which an IR filter is employed
as part of the camera lens [22]. In addition, HemaApp attempts to estimate the hemoglobin count
as opposed to estimating SpO,. Existing works on estimating SpO, using the built-in flashlight and
the camera of off-the-shelf smartphones include the systems proposed by Hodgkins et al. [15] and
iCareOxygenMonitor [18]. However, all of them provide a very low accuracy and are not intended
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for clinical use. More details about their performance is presented in the evaluation section (Sec-
tion 8). The low accuracy is the result of the fundamental challenges when one tries to repurpose
the camera and flashlight for SpO, measurement.

Challenges. First, most of the smartphone flashlights do not include the IR wavelength, which is
a critical component for non-invasive SpO, measurement. Second, while most of state-of-the-art
smartphone-based techniques are using a linear regression model to convert from pulsatile ra-
tio to SpO; level, such a conversion does not work properly in practice due to the impact of the
users’ finger movements, pressure, contacting area, pulse amplitude, and ambiguity of converting
from light intensity to RGB measurement of the camera. Third, the smartphone’s camera picks
up most of the lights from the flashlight including both hemoglobin responsive and hemoglobin
non-responsive wavelengths. While the pulsatile is buried under a small intensity change of the
hemoglobin-responsive light, this pick-up mechanism makes the collected light intensity of the
camera non-usable for SpO, measurement. Fourth, the user’s finger movement and finger pressure
against the camera during measurement significantly affect the estimation quality. SpO, measure-
ment relies on sensing user’s pulsatile waveform whose amplitude is shorter than that of other
human-generated movements. A tiny shift of our finger possibly magnifies the amplitude or even
shatters the signal, which consequently has a significant impact on the prediction. Pressure con-
trol is as crucial as finger stabilization because strong pressure halts the blood flow in the arteries
inside our fingertips. As a result, the pulsatile pattern disappears, leading to the measurement in-
accuracy. Observation from commercialized pulse oximeters showed that the prediction will not
be released if the input signal gets distorted. Instead, a warning message will show up to indicate
the reason of the poor signal. Conventional wisdom has not yet distinguished between the motion
of the finger and inadequate pressure. In most of the existing systems, users only receive a warning
saying that their finger is out of the region, which makes it difficult for users to adjust the pose of
their finger or modify how hard they should press on the camera. Fifth, we are concerned that the
heat released by the phone’s flashlight can cause a serious skin burn when shining on the finger
for a long time. Note that, children’s skin can quickly absorb the heat and gets burned under the
high-intensity light source. Shortening the time of keeping the light on can help to reduce the heat,
but degrades the signal quality, especially in the case of the reflectance mode where lights need to
bounce back multiple times before hitting a receiver.

In this article, we propose a novel mobile oxygen saturation measurement system, named PhO,,
that has a potential to accurately provide the SpO; level in real time using the smartphone’s camera
and flashlight. Specifically, as demonstrated in Figure 1, PhO; is a phone-based system that includes
ahardware add-on designed with optical filters of different wavelengths and snapped on the phone
as simply as using a phone case. By leveraging the advancement of 3D printing technology and off-
the-shelf filters, our add-on is lightweight and does not affect normal functionality of the phone’s
flashlight or camera. Moreover, PhO, produces two light beams at separate wavelengths from
single light source with the use of the add-on. The add-on also helps stabilize the user’s finger
during the SpO; measurement and does not prevent the phone’s camera from its normal use of
taking pictures. However, due to limitations of camera hardware, the reflected light captured by
the PhO, device needs to be further processed using dedicated algorithms to obtain usable PPG
signals and reliably estimate the SpO, level. In particular, PhO, real-time model takes streamed
frames to evaluate the appearance of possible artifacts and extract the PPG signal of high quality.
The high-quality signal is finally input into a regression-based optimization model to calculate the
SpO; level.

We made the following contributions in realizing the proposed PhO,, a phone-based SpO, level
estimation system:
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Fig. 1. PhO3 and its general view for SpO2 measurement. (a) A person is placing his index finger on PhO3
add-on to check his SpO level. (b) A back view of PhO3 use in which the add-on covers the phone’s flashlight
and back camera and a zoomed-in visualization of how PhO» works.

e We develop a lightweight, cost-effective, and portable smartphone add-on allowing mobile
device to measure SpOy level accurately and reliably.

e We propose an optical spatial separation technique to extract near infrared (NIR) and red
lights from the camera’s flashlight. As the NIR and red lights are hemoglobin responsive,
their intensity variations are analyzed to infer SpO, ratio.

e We devise algorithms to identify the human motion artifact and pressure estimation that
provide the best performance of PPG estimation and therefore improve the accuracy of SpO,
measurement.

e We design a non-linear calibration technique to infer the SpO, level from the observed
intensity from two separated lights mentioned earlier.

e We introduce an effective design for light distribution to reduce the heat load without af-
fecting the light intensity.

e We verify the performance of our proposed solution with the gold standard noninvasive
SpO; measurement device. The PhO; obtains 3.5% of accuracy with 80% of confidence com-
pared the gold standard device with in-lab experiment. For the experiment conducted in the
hospital, our device is highly correlated with ground-truth with Kendall t = 0.83.

e We confirm that the PhO, device receives very positive feedback from 12 trial users, includ-
ing 6 members in the lab and 6 patients in the hospital.

e We discuss potential applications of our proposed technique. In particular, we envision that
the spatial-optical dividing techniques can be used to extract the desired wavelengths for
any light-based applications.

2 RELATED WORK

In this section, we present a thorough survey of existing literature on SpO; estimation to compare
and contrast with our proposed system, PhO,.

Pure Phone-Based Solutions. Multiple systems for easy-to-access oxygen-level measurement have
been developed in the form of a mobile app. Existing apps, such as Instant Pulse Oximeter [19],
Vigor SpO; [61], Instant Pulse Rate [20], Heart Rate Pulse Oximeter [14], and iCare Oxygen Moni-
tor [18], follow the same schema in which a single streaming video clip with duration from around
10 to 15 seconds is processed to extract the heartbeat and oxygen level. The key shortcoming of
these systems is their inaccuracy due to the challenges that we have mentioned in the previous

ACM Transactions on Sensor Networks, Vol. 16, No. 1, Article 9. Publication date: January 2020.



Smartphone-Based SpO, Measurement by Exploiting WL Separation & CP 9:5

section. PhO,, in contrast, identifies and addresses these challenges to significantly improve its
performance.

Hardware-Aided Phone-Based Alternatives. The most relevant technique to our work is
HemaApp [62], which uses a mobile phone camera with the aid of a high-power incandescent
light bulb or a group of LEDs attached to the front of the camera lens, to measure the hemoglobin
concentration but not the SpO; level. Although the system was cleverly designed and reportedly
works well to estimate hemoglobin concentration, it strictly depends on the availability of an ex-
ternal IR light source and relies on the ability to capture the IR light of the phone’s camera, which
is not available in off-the-shelf devices with IR filter (we empirically prove this with the evidence
of spectrum analysis of lights collected from iPhone 4, Galaxy S4, Galaxy S5, and Note 3 in the
next section). Our system, in contrast, is not only free of hard-to-access additional equipment, but
also independent of external IR source, which makes our app compatible with most of off-the-shelf
smartphones.

Dedicated Pulse Oximeters. Pulse oximeters have been developed and widely used since 1930s.
The designs and products have evolved from devices which are large, heavy, expensive, and avail-
able only for military and sleep laboratories [44] to ones that are cheap, small (ear-lobe usage (3,
13, 41, 43], fingertip compatible), and pervasive (e.g., FDA-approved devices can be bought eas-
ily from $30.00 [7, 16, 37, 48, 56]). There are also different form factors of pulse oximeter such as
forehead-type [2, 4, 9, 51, 64], tracheal-type [5], and ring-type [17]. At the moment, the quality
and performance of cheap pulse oximeter still raise concerns for the healthcare community [30].
Other dedicated hardware that can be connected to smartphones includes Phone Oximetry [45]
and audio-based pulse oximetry [46]. They use the commercial pulse oximetry probe in connec-
tion with software on smartphones to calculate the SpO, level. However, these solutions require
dedicated hardware to be purchased; users to carry the hardware with them for frequent moni-
toring; and sometimes the hardware does not fit the patient’s finger or earlobe, which reduces its
accuracy. In comparison, PhO; frees the users from carrying an additional device and allows them
to use their mobile phones instead while maintaining the high level of accuracy.

Finger Pressure Detection and User Guidance Studies. Research on phone-based SpO, measure-
ment [28, 53] or oxygen concentration (HemaApp) [62] left the problem of finger posture and
inappropriate pressure remains untouched. However, in clinical literature, Hayes and Smith [12]
points out that finger pressure is one of the main causes of error in pulse oximeters. Therefore,
with PhO,, the pressure at the contact area is carefully considered. A set of algorithms is pro-
posed to estimate the improper pressure events from which a feedback is launched to notify users
and to suggest pressure adjustment to users. To the best of our knowledge, pressure control has
not been explored to improve signal acquisition for SpO, measurement for neither phone-based
nor dedicated-hardware solutions. The techniques derived here, therefore, can benefit the current
design of commercial dedicated-pulse oximeters as well.

3 PRINCIPLE OF SPO; MEASUREMENT

In this section, we present in detail the background of noninvasive oxygen saturation (SpO;) mea-
surement from its first principles, through derivation, to the practical techniques. This section sets
the foundational understanding of the existing SpO, estimation techniques, from which PhO; is
built up on.

Oxygen saturation (SpO,) is the percentage of oxygen in arterial blood measured by taking a
ratio of the hemoglobin with oxygen to the sum of oxide hemoglobin and dioxide hemoglobin.
Therefore, SpO; level can be obtained by SpO, = POZﬁOIZJHb in which pg; and ppy are the con-
centration of hemoglobin with and without oxygen, respectively. In an invasive SpO; estimation
approach, pg; and ppp can be calculated through a blood gas test in which blood samples are
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Fig. 2. Non-invasive SpO2 measurement illustration in which an incoming light source penetrates different
layers of a finger then reflects back to produce a PPG signal that is captured by a dedicated photoreceivers

collected and count the number of hemoglobin-binding oxygen [21]. Though this technique is ac-
curate, it is invasive and costly. Therefore, non-invasive alternatives have been proposed and are
much more widely used.

Non-Invasive SpO, Measurement. The key idea is to evaluate the attenuation of light penetrat-
ing through multiple layers inside the human finger and mark down the “pulsatile” waveform
on a photon detector. This method is called photoplethysmography (PPG), which was originally
developed as an alternative to measure cardiovascular pulse waves.

(1) How Is Pulsatile Wave Captured? The human finger includes multiple layers such as skin,
pulsalite blood layer, venous blood layer, other tissues layer, and the bone (as illustrated in Figure 2
(top)). When a light beams into the finger, the reflected component, which can be captured by
photodiode, has different intensity as shown in Figure 2 (bottom). The fluctuating patterns in the
light intensity are caused by the following characteristics: (1) the local minimum value of the
light’s intensity, called DC component, represents the intensity of light that is reflected from the
static component inside human fingers, such as bone, venous blood layer, and non-pulsatile blood
layer; and (2) the maximum variance of the reflected light intensity, called AC component, is defined
by the variance of the pulsatile blood layer. Using the latter characteristic, the variance of the
reflected signal intensity directly correlates to the pulsatile waveform generated by cardiovascular
waves [40].

Let’s consider the beaming light that has the intensity of I, and the intensity of the reflected
beam is I, the decrease of the intensity can be obtained from Beer-Lambert’s law [31] using the
following equation: I = Ipe*YP4_1In that, £(1) is the absorptivity—a function of wavelength—
and ¢ and d are the concentration and depth of the medium, respectively. When light traverses
through multiple media, the total absorption is the summation of all the media coefficients in the
exponential term I = JyeXi ~¢i(Mpidi,

Considering oxyhemoglobin, deoxyhemoglobin, and tissues as the three main media inside the
finger that let light traverse through, the light intensity after reflection can be represented as:

I= Ioez(*ft(A)Ptdt*EHb(A)PHbdaffoz(A)Pozda) (1)

In that, &, egp, and &y, represent the extinct coefficients of other tissues, pulsatile, and non-
pulsatile blood layers, respectively. d; and d, denote the thickness of tissue and blood medium,
respectively. The key factors are the concentrations denoted as p;, pyp, and pg,, respectively to
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Fig. 3. Absorptivity of hemoglobin and dehemoglobin versus wavelengths.

each medium. The optical path length of tissue layer d; might be stable while arterial part d, varies
periodically following cardiac activities. Therefore, the light intensity received when the blood
level is at minimum (in diastolic phase (d)) and at maximum (in systolic phase (d%)), denoted as
I, and I, can be presented as:

I, = Ioez(—ft(A)Pt di—epp (D) prpdg—ei (1) pods) (2)

I, = IOeZ(—S:(/l),Dzdz—SHb(A)prdZ—foz(/l)pozdg) 3)
Taking the ratio of I, and I;, we obtain the form in which some of the variables are called.

o _ p2ens Wprn(as-d)+enNpnlds—ds) )

Iy
The absorptivity change can be obtained by taking the natural logarithm of the above equation

and scale by half A = 0.51n(%) = egp (M) papAda + €02(A) po2Ad,, where Ad, = d — d is another
unknown variable. To remove this value, we apply the formula for one particular wavelength. In
the commercialized pulse oximeter, the wavelengths corresponding to Red and IR are selected to
calculate the absorptivity ratio (Figure 3) [27, 52, 68]. We can rewrite the following equation to
take redundancy factors into consideration.

A= egp(AN)papAda + e02(4) poaAd, + Ay (5)

Finally, we derive the form of the differentiation absorbtivity as follows:

dA Ad, Ad,
— = A — + A — 6
7 eny(A)prp 7 £02(A) poz o (6)
Ip(r) I (r)—1p(r) AC(r)
Cd(n(Em)) e TR e
- 1,(ir) ~ L(ir)-I(ir) ~— AC(ir)
d(In(m)) /e F4E— bean (7)

_ erp (r)pHD + €02(7) Po2
erp (ir) prp + €02(ir) poz
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Recall that the measurement of SpO; is calculated by SpO, = . By substituting po, and pgp

into Equation (7), we first isolate the term:
poz = SpO2(poz + prb); prp = (1 = SpO2)(poz + prb). (8)

Hence, Equation (7) after the replacement becomes:

_ EHb(r)(l - SPOZ) + Eog(r)SpOZ

enp (ir) (1 = Sp02) + £02(ir)SpO;

By exchanging the position of absorptivity r and SpO,, SpO; can be derived from the following
final formula:

©)

erp(r) — erp ()R
erp (ir) — enpo, (r) + [empo, (ir) — enp (ir) IR

(2) Why Do We Need Two Wavelengths? The typical hardware of the pulse oximeter includes two
light sources (Red and IR wavelengths) at the transmitter side. On the receiver side, two photon
detectors are used to measure the intensity of the two lights after going through our finger (trans-
parent type) or reflecting at the contact point (reflectance type). When using the flashlight and
camera as transceivers, the transmitter and receiver are placed on the same side. In human blood,
the majority of hemoglobin components (called functional hemoglobin) are oxygenated hemoglobin
(oxyHb) and deoxygenated hemoglobin (deoxyHb) (around 98%); the other 2% (called dysfunctional
hemoglobin) includes metHb and coHb. Those two components absorb an unequal amount of light
at different wavelengths. In order to measure the oxygen saturation level, the two wavelengths
must be used to compare how much of each light is absorbed by blood. Depending on the amount
of oxyHb and deoxygenated Hb present, the ratio of amount of the first light absorbed compared
to the amount of the second light absorbed will be obtained and inferred the SpO; level.

(3) Which Wavelengths Are Used? In traditional pulse oximeter design, RED light (660 nm) and
near-infrared (IR) light (940 nm) are used to maximize the differences between absorption level of
oxygenated and deoxygenated hemoglobin. However, IR lights are not producible by smartphone’s
flashlight and its camera cannot capture the light at IR frequencies. Indeed, our spectrum analysis
results for flashlight of various phones (iPhone 4, Galaxy S4, Galaxy S5, and Note 3) show that
there is no IR components in the flashlight (Figure 4). Furthermore, most of latest camera lens
come with built-in IR filter for improving normal picture quality, which makes it impossible to
record IR light in off-the-shelf phone. Due to those difficulties, our system must be able to select
the two lights with the most appropriate wavelengths that works with smartphones while giving
the recognizable absorption ratio between oxygenated and deoxygenated hemoglobin.

SPOZ =

(10)
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All in all, to measure SpO; level accurately from off-the-shelf smartphones, the system needs:
(1) two different hemoglobin-responsive light sources; (2) these two lights must be spatially sep-
arated so that the receiver can distinguish their impact on the camera sensor; (3) the camera has
to be able to infer from the intensity to the pulsatile variance for SpO; measurement; and (4) The
obtained pulsatile must be usable for properly inferring SpO; measurement regardless of changing
subjects or smartphones.

4 SYSTEM OVERVIEW

In this section, we first present the challenges in realizing PhO;, then discuss different components
of the system that are designed to address these challenges.

4.1 Design Challenges

(1) Smartphone’s Flashlight Cannot Generate IR Lights. In literature, Red and IR light are the two
wavelengths that yield the highest accuracy and are used in most FDA-approved noninvasive pulse
oximeters (see Section 3). However, since the camera’s flashlight is made to generate lights that
are capturable by the camera, the light that it produces is manufactured so that it falls only within
the visible range. To confirm this phenomenon, we conducted an experiment to analyze the wave-
length of lights from modern smartphones (including the Galaxy Note 3, Galaxy S5, Galaxy S4,
and iPhone 4). We used Ando Model AQ6315E Optical Spectrum Analyzer [42] for this experi-
ment. The result in Figure 4 shows that the flashlight contains only the light within the visible
and near IR ranges (wavelength from 400 nm to 779 nm). To overcome this problem, instead of
selecting the Red and IR lights as in the ideal cases, we make use of the Red wavelength (670 nm to
690 nm) and near IR (NIR) wavelength (700 nm to 779 nm) from the flashlight (see Section 5). This
modification requires a new model for us to identify the wavelengths that work best. We present
our wavelength selection technique in Section 5.

(2) NIR Filter Needs to be Thin. To construct our add-on, the filter must be thin enough to avoid
signal loss due to optical absorption and scatter. However, there is no NIR filter on the market
that fits our need due to its minimum thickness. The minimum thickness that we found for NIR
filter is usually around 5.1 mm [39]. We propose to take advantage of the non-linearity of the basic
color filter (green color) to address this problem, as can be seen later in Section 5. As a result, our
designed filter has the thickness of less than 1.5 mm, which is suitable for most mobile add-on
form and minimizes the distance between the human finger, the light source, and the camera.

(3) Smartphone Camera Is Noisy. The smartphone camera is designed to pick the light component
that has high intensity within the visible range. It usually gathers the whole range of transmitted
white light from the flash. Hence, the light intensity variance captured by the camera after going
through user’s finger is very noisy due to the impact of non-responsive hemoglobin wavelengths.
Alight divider and a set of separation algorithms are required to create two separated light sources
for SpO, measurement (see Sections 5 and 6).

(4) Human Finger Pressure Has Significant Impact to the Accuracy Measurement. The ratio be-
tween the two light sources helps to remove the impact of non-AC component. However, given
the sensitivity of the camera sensor, the pressure of placing the human finger as well as the size of
the contacting point plays an important role to the accuracy of estimation. The finger movement
and pressure have a large impact to the accuracy of measurement. Therefore, online feedback sys-
tem is needed to make sure that the finger movement does not happen during the experiment and
the user provides sufficient pressure to the device (see Section 6.1).

(5) Impact of Red Chromophore on the Stability of the Measurement. The dominant color in the cap-
tured image is red which directly relates to the red chromophore of skin, flesh, and the hemoglobin
layer. In the existing techniques of using LEDs with single-wavelength, the variation of red
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Fig. 5. Overall system design and architecture of PhO,.

chromophore produces less interference to the primary receiver and can be considered as one
participant in the DC component. Camera sensors usually capture a wide range of wavelengths,
thus, magnify the errors. The conventional wisdom on removing DC is not sufficient to eliminate
the impact of red chromophore variation. Therefore, we introduce an extension of the formula for
the absorptivity R to further remove the constant factors such as red chromophore. By adjusting
the gain parameter in the compensation term, it is possible to evaluate the effectiveness of the
proposed solution (see Section 5).

(6) Legacy Linear Regression Model for Light Intensity to SpO, Is not Applicable. Linear regression
model is applied for most of pulse oximeter devices as the light beams (photo diodes) and photode-
tectors are specifically designed for SpO; measurement [59]. When using the flashlight and camera
from the phone, the linear regression model cannot be used due to the impact of the flashlight’s
noises (non-responsive hemoglobin wavelengths) and the light intensity to RGB conversion, the
human pressure, contacting area, and finger movements to the camera’s readings. Therefore, the
SpO; calculation model must take all these effects into account (we propose a new mapping model
for the camera-based method in Section 7).

(7) Preventing Skin Burn Caused by Concentrated Lights. Energy from the lights can convert into
heat and results in blister burns on skin. To the best of our knowledge, none of the research about
measuring vital signals using the phone flashlight discusses this issue. We also did not notice the
problem at the first stage of this project [6] until it had undergone a series of user evaluations
in the hospital to reveal the burning issue as a serious problem that needs to be solved first to
protect future users. Reducing light intensity is not an option because it will affect to the quality
of PPG signal. Using our proposed design of light distribution as described in Section 5, we show
that the temperature drops significantly below the minimum threshold of burning skin.

4.2 Proposed System

In this section, we outline the structure of our system in measuring the oxygen level by adapting
only the parts and functions built in to the off-the-shelf smartphone, as illustrated in Figure 5. The
specific design of add-on helps to isolate the lights with two different wavelengths. The raw data
is recorded and segmented before undergoing multiple steps of processing to give out the final
prediction. On top of that is a mechanism that helps to ensure that the quality of the signal is not
affected by motion artifacts and inappropriate pressure.

Optical Spatial Divider for Wavelength Separation. Unlike the lights in an incandescent lamp, the
lights coming from the flash in a smartphone do not contain components whose wavelength is
larger than 780 nm. The current pulse oximeter relies on the lights that reach the IR frequency,
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which is unobtainable when the flashlight is the only source of illumination. We can use the fact
that the outer sources were from external components such as LED or incandescent lamps, which
was introduced in HemaApp [62]. Then power is an issue. In order to use only the flashlight source,
it is essential to select a substitute wavelength for IR in the range that is given by the smartphone
flashlight. The lights with wavelengths less than 600 nm will be absorbed by the red skin pigmen-
tation. Therefore, our interest range is from 600 nm to 779 nm and the one that maximizes the
angle of relational curve between Red and IR (figure) is our candidate. The arrangement of one
optical polyester filter and a narrow-band borosilicate glass filter, following the two frequencies,
on camera surface is our system’s unique signature in dealing with wavelength separation and
without the need of additional illumination sources. The structure is integrated within the add-on,
including a special feature for the finger-stabilization, which attaches firmly to any smartphone
fit to the design. In addition, the light distribution feature is purposely positioned in front of the
smartphone flashlight to evenly share the intensity over the finger, and thus reduce the risk of
getting burned.

Finger Pressure Control. While existing systems allow signals with motion interference to be
pruned into their main functions, we argue that PPG signals are overwhelmed by other movements
and thus cannot be completely separated. The design of PhO, will not take them into account;
in fact, they need to be eliminated or utilized to inform users in advance of the struggle. The
system can (1) differentiate between motion and the fluctuation from pulsatile nature within a
small number of frames, (2) sense the pressure level by only vision features, and (3) notify users
whether the signals are noisy and show an instruction to adjust their finger placement. The real-
time function provides a more generic picture to interpret the respiratory conditions rather than
getting the result after a specified minimum wait.

The prototype is supported by a set of multi-stage processes from manipulating with the raw
data, smoothing, processing the outcome signal to the key features of the estimation of absorption
ratio and its reference to the oxygen level. Each of the procedures critically contributes to the
success of our prediction model. Here, we address every single piece of the system starting from
the point that has been assumed for a long time to be trivial.

Red Chromophore Compensation. We realize that the impact of red chromophore overwhelms
other factors. Therefore, in the extension form of absorptivity R, we try to isolate the red chro-
mophore from the other DC components so that it can receive more special treatments. First, we
remove the redundant information in the Red source by discarding the green factors in the red fil-
ter region. Similarly, the IR component is filtered by removing red factors in the green filter region.
Then, to completely block the impact of the red chromophore, we further subtract the average of
red intensities for each calculation of R.

Optimal Relational Model. Given the frequencies in that range without the IR, the variation of
ratio R is small compared to the change of SpO, making the linear calibration becomes inaccurate.
Since, the pulse oximeter adapts Red and IR lights, the relation between absorption ratio and R
(Eq. (7)) can be approximated by a linear equation. We argue that using the original equation with
a larger number of variables to map between R and measured SpO,. In this article, we propose
a solution to formulate the problem using descent gradient, to be more specific, the Levenberg-
Marquardt [25] method helps to identify the best fitting curve for our model. The high saturation
of the flashlight versus the dense and focus beam of LED diode returns a large number of out-
liers which defects the estimation. Our expectation is to select only the pairs, R and SpO,, which
contributes most to the regression curve. RANdom SAmple Consensus (RANSAC) is developed to
divide the inliers and outliers of data points without any prior knowledge about the model. Us-
ing iterative cross-validation, RANSAC filters the outliers at each iteration and reserves only the
meaningful data points. The hybrid structure of Lavenberg-Marquardt and RANSAC gives a strong
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Fig. 6. PhO2 hardware design (3D model - left, Prototype - right).

fitting curve which eliminates the outliers in the data and solves the high complexity problem such
as the relation between SpO, which is a fractional equation with four degrees of freedom.

5 OPTICAL SPATIAL DIVIDER

In this section, we will introduce the design of add-on and discuss how the filters satisfy the non-
invasive measuring prerequisites. From the Beer-Lambert law, the problem of light scattering is
negligible, which does not reflect the real situation correctly. Moreover, the diffusion of the flash-
light and other sources from the environment can reduce the system performance. To minimize the
distortion, we designed a special add-on to (1) prevent the interference of unwanted components
from the natural source, (2) navigate the light toward the camera region, (3) stabilize a finger dur-
ing the recording session, and (4) play a role as a shield to protect the lens. Using SolidWorks [58]
software for design and a 3D phone model, we created the add-on with specific features that can
conveniently snap on top of the corresponding device and easily be removed for normal usage.
Right above the camera region is the finger-stabilizer having a curve of the fingertip. This fea-
ture allows users to easily slide their fingers in and also leaves more space for lights to bounce
off the finger and hit the camera lenses. The component also prevents the user from pressing too
hard, which halts the bloodflow into their vessels, thus resulting in the failure to capture the pul-
satile wave. The material is chosen to be the stiffest and manufactured with a very fine-grained
resolution.

The two lenses are positioned to equally divide the image into two regions for Red and NIR,
respectively, as illustrated in Figure 6. Following the Plank equation, NIR light has smaller energy
than the visible one and thus needs long exposure time to leave a trace on camera sensor. The
CCD function uses a pool of electrons to measure the intensity. Obviously, the visible light with
its strong energy will have a better chance to fulfill that pool rather than the NIR. We placed a
band-pass optical filter covering the flashlight to reduce the portion of visible components and
allow for more NIR to come in and collide with the CCD sensor.

While most of color-filter is capable of blocking all the unwanted colors, the near IR component
will always go through the color filtering. We design two filters and attach them to the smart-
phone’s camera. The first filter absorbs the Red light at wavelength 680 nm (20 nm bandwidth) [1]
and a green filter [29] to allow the near IR and green lights to pass through. The second filter
removes the red component and only allows the light components that are highly absorbed by the
red skin (wavelength less than 600 nm [57]) to pass through. Fortunately, the latter filter also allows
the NIR light component to go through it. By carefully designing those two filters, we obtained
two frequency components in the light (Red after the red filter and NIR after the green filter) as
shown in Figure 8. The precise wavelengths need to be identified for the measurement of oxygen
level. The research of Karlen et al. [26] about the correlation between SpO, and absorptivity ratio
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Fig. 9. The curvature level of different wavelength combination.

(R) with respect to different combinations of the light source indicates that the cultivation of the
relational curve between SpO; and R can help to identify the wavelengths. The large angles have a
better performance according to [26]. We replicate that simulation for those lights having wave-
length from 600 nm to 750 nm and calculate the curvature level of angle between the relational
curve and the vertical axis. From Figure 7, the combination of lights at 678 nm and 724 nm has the
highest curvature at 1.002 radian. We select those as the possible candidates and search for all the
neighbors to identify the optimal pair.

Alleviate Heat from the Smartphone’s Flashlight Shining on the Finger. The previous design [6]
did not encounter the heat issue since our evaluation did not remain unsolved long enough. In
this version, we identify the problem and refine the structure to minimise the focused energy at
one point. At first, we reduce the radius of light guiding tunnel from 2.55 mm to 0.6 mm, which
also reduces the amount of intensity (Figure 9). To resolve the problem, additional tunnels are
included, so that more light rays can pass through and only a small amount of energy is created
in each tunnel. The design of light distribution can cut down a large amount of heat and retains
sufficient intensity to capture pulsatile information and reduce light scattering.

6 PHOTOPLETHYSMOGRAPHY SIGNAL EXTRACTION

In this section, we present our solution for pressure correction, which is based on the fact that
different levels of pressure can affect the the pulsatile shape. To further improve the quality by
cutting off the uninformative areas within a frame, we introduce an algorithm to extract only
blocks having a strong FFT peak that associates with the clear pulse rate.

6.1 Mitigating Impacts of User Behaviors

Influences to Signal Quality. As we stated in previous section, the PhO, system uses the non-ideal
light source (phone flashlight) and receiver (recorded image frames) which has multiple drawbacks
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and challenges. These include the uncontrollable light source (i.e., phone flashlight) and image cap-
tured from IR-filter-equipped off-the-shelf phone camera. Those two factors are highly sensitive
to light channel interference between the flashlight and camera. Theoretically, our system must
record reflected light from patients’ finger at extremely close distance in order to extract the PPG
signal from the stream of video. Thus, even a slight interference to the channel between the light
source and receiver would cause certain consequence to the signal quality (i.e., reflected light and
captured images). We investigated the abnormal changes in our PPG signal in order to search for
the causes of interference. Based on recorded data from the subjects and their PPG signal analysis,
we find out that the unavoidable sources of interference include (1) the subject’s body movement,
(2) miniature movement at the fingertip due to human organ activities, and (3) unawareness of the
subject’s finger pressure on the device.

First of all, human bodies are subjected to displacement of the breathing process. When inhal-
ing or exhaling, the upper body parts (i.e., abdomen, chest, and shoulder) fluctuate at respiratory
frequency. While measuring SpO,, subjects follow the instruction to stabilize their finger on the
device. However, at this so-called “stable” posture, the deltoid and pectoralis minor muscle groups
keep moving the arm and hand back and forth slightly. Thus, a small displacement at the contact-
point fingertip and the camera is generated, which leads to the abnormal change in the received
PPG signal.

Second, each heartbeat, which ejects blood into the vessels, causes a repetitive motion in the
human body. This phenomenon is called the heart ballistic forces, which can measured from the
ballistocardiography (BCG) signal. These BCG signals can be easily observed by adding sensors
to everyday objects or to the human body. Each blood pump cycle generates pulses that can be
observed from all parts of the human body, even the fingertip in our case. Those pulses also create
miniature changes at the contact point, which affect the intensity of the recorded frames. This
leads to the abnormal patterns of the PPG signal.

Last, while using our system, the subjects were observed to change their pressure on the con-
tacting point unconsciously. The digitorum profundus and flexor digitorum superficials muscle
groups, which control the movement of fingers and fingertips, tend to move slightly even when
the subject is at the stable and relaxed position. This causes the most influence on the surface at
the finger and the flashlight/camera, in such cases inappropriate pressure causes the intensity of
received signal to be overstimulated or too low. Fortunately, by analyzing the recorded frames, our
system can successfully detect whenever the subjects’ fingers are at the wrong degree of pressure.

Mitigate the Pressure Problem. Pressure detection has been addressed for the usage of mobile
phone camera and flash [32]. In addition, motion artifacts and movement detection for the tradi-
tional PPG data collector and pulse oximeter have been proposed in [26, 65-67]. SpO, is designed
with a pressure detection algorithm to deal with the problem when the subjects’ fingers apply the
force on the devices incorrectly.

In our previous prototype [6], different levels of pressure are identified by accessing the height of
peak amplitude of the FFT transform processed in an N -second chunk of data [6]. We experienced
that the FFT (1) is not robust to estimate motion and pressure and (2) is a costly computation.
Therefore, we break the problem into two pieces. First, we detect the abnormality waveform, which
indicates that either movement or inappropriate pressure happened. Second, based on the IMU
data, we can precisely tell whether or not the movement occurs. If the answer is yes, a pop-up
message will appear asking users to stabilize their fingers. Otherwise, it processes into the next
stage for detecting pressure. Note that the system should be able to immediately inform users
about how to adjust their pressing against the camera. That implies the procedure should take
only a small number of frames in processing.
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Fig. 10. PPG signal quality monitoring. (a) Abnormal PPG signal detection using Heart Rate Variability.
(b) Pressure control using Variance of Laplacian Image.

The abnormal Heart Rate Variability is an indication for distorted PPG signal. To obtain the HRV,
first, the duration between two consecutive PPG peaks is estimated to return the RR interval. Then,
the standard deviation of all RR intervals within a chunk defines the HRV. Figure 10(a) illustrates
the distorted PPG signal has large HRV than normal one (3.5 versus 0.2). In our application, the
HRYV threshold is at value of 2 to be sufficient to detect the distortion.

To process in each frame, we analyse the quality of the image associated with the pressure level.
Fingerprint features are flattened under strong pressure, thus, the observed image looks blurred.
When users loosen their fingers, the amount of details in the image increase because the fingerprint
features pop out. Therefore, image smoothness can be used to infer the level of pressure of the
finger pressing on smartphone’s camera. The coarseness of a picture, defined by the number of
edges and corners, can be evaluated using variance of the Laplacian image.

Laplacian image L(x,y) is the second spatial derivative of a corresponding gray image I(x, y):

L(x,y) = + 9L The value of Laplacian at pixel (x, ) gives the information of the stiffness of
surroundlng area. Plxels belonging to the edges or corners in Laplacian image have a larger value
than those in the smooth area. In total, a blurred image results in a lower variance of Laplacian
than that of a coarse image. In Figure 10(b), three different pressing levels and their corresponding
Laplacian images are demonstrated. As can be observed clearly in the region enclosed by the red
boundary, strong pressure produces a smaller amount of details than weak pressure.

The algorithm can be minimized up to a 1-second window at 0.5 seconds overlap and still detect
the wrong subjects’ finger posture. By detecting the correct position of the bad pressure, our system
smooths the extracted PPG signal and gets rid of the abnormal error calculation to the final result.
Ideally, the system can scan for bad posture at the basis of every 0.5 seconds and notify to the
subjects while measuring SpO; in real-time so that they can adjust the pressure by themselves.

6.2 ROI and Red-IR Divider Detection

Although the pressure is detected and provides an online feedback to the user, the contacting
area between human finger skin and the camera filters are not even. We need to detect the region
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ALGORITHM 1: Borderline detection using K-means clustering.
input: I- input image with the divider.
output: ListIdy List index of pixels in each region.

Initialize values for the means of each region 1 and py respectively.
/* Finding optimal means and their corresponding list of pixels/
for t =1 — MaxNumberO fIteration do

Listld, « [J;

for i =1 — NumberO fPixel do

k = argming _ 55 d(p(i), pie);
LiStIdI% — [List[d];;i];
end
Update values for each py.
end
return ListIdy;

of interest at which the camera can capture the PPG signal properly and clearly. Typical size of
pinhole camera is from 0.33 to 0.58 mm [47], which is too small to accurately manipulate. Since
the divider is not always in the middle of the image, to precisely allocate the region for Red and
NIR, a vision technique is required to subsequently split the two areas. Under the incandescent
light, the two areas appeared with two different colors (red and green). The distance between two

pixels p; and p; giving its chromatic characteristic is defined as d(p;, p;) = \/ijl (pi(c) = pj(c))?,
where p;(c) indicates the intensity of pixel i in color channel c. The detection can be formalised
as a segmentation problem which can be achieved by using the K-means clustering (Algorithm 1).
We initialize two pixels as the central means of each group and assign the others following the
condition k = argming _y5d(p, pik).- k is the group index that the candidate pixel p is assigned to and
Ui s the central mean of group k. After all the pixels are assigned to the corresponding groups, we
update the mean value and repeat the process until reaching the maximum number of iterations.

The PPG signal is obtained by taking the average of the intensity of the region. However, not
all the pixels contribute to the signal equally; some are only noise. Therefore, to amplify the sig-
nal, a filtering procedure based on the characteristic of the PPG itself is applied. The phenomena
of PPG signal is to describe the blood flow characteristic, thus, it should present some types of
pulse waveform. In other words, their frequency should be bounded within the range of our heart
beat. Given that information as a clue, we divide each segment into small cells and measure the
frequency of each cell across the time. The sub-PPG signal generated by one specific cell will be
converted into the frequency domain to detect the highest peak. If the dominant frequency lays in
between the lowest and highest allowable heart rate, the cell is considered to belong to the interest
region. Finally, we block only the regions that contain the pulsatile information.

PPG Extraction and Absorption Ratio Measurement. The PPG signal is obtained from the reflected
lights are highly corrupted by noise especially in the region of NIR. Therefore, the signals need to
go through a set of different layers of filtering to improve the SNR without distorting the shape of
that signal. In our work, we apply the Savitzky-Golay filtering [54] which helps reduce the noise
while still maintaining the pulsatile shape. The peak-to-peak measurement is used to estimate the
AC component, and the DC is measured by the bottom of local PPG signal (Equation (7)).

7 MODEL FOR CAMERA-BASED INTENSITY TO SPO, LEVEL INFERENCE

Red Chromophore Influence Analysis and Compensation Approach. Recall that the absorptivity ratio

Requals %. Let’s denote ggi;)) =nand % = d;theratiobecomes R = %. Information
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collected in both the numerator and the denominator is interfered with by the red chromophore
coming from the skin, flesh, and blood. We introduce a compensation term for the red color to each
part of the fraction. For each frame, the mean intensity of red channel for each filter is calculated
and we note them as t, and t;,. To normalise the compensation value, we subtract the ratio to the
mean red intensity of the whole image y. Finally, the absorptivity ratio R with red chromophore
compensation is presented as follows:

R = —_nir k3y, (11)

with ki, ky, and ks are the gain parameters to control how much each compensation term is in-
volved in the equation. For convenience, we set k; = k; with the assumption that the t, and t;,
have the same impacts on the ratio.

Non-Linear Calibration with RANSAC Outliers Removal. Absorption ratio estimation (R) is mea-
sured following the equation that has been proven by the Beer-Lambert law, as mentioned in
Section 3. However, such derivation must be modified with the flashlight light source due to the
impact of high saturation and large number of outliners. To overcome the problem, we propose a
hybrid structure of using RANSAC [10] and the Levenberg-Marquardt (LM) [31] optimisation to
obtain extinction coefficients. More specifically, given a derived model and a set of observation, LM
is a gradient-based method which is usually used to estimate the unknown parameters/variables
in the model. Our approach attempts to minimise the gap between the prediction values and the
ground truth by updating the parameters following the slope of the gradient. To simplify the nota-
tion for the next step, we generalise the equation of approximating SpO, with input R (mentioned

in Section 3) as follows:
ag — bHR

S = 12
apg —ao + [bo — bu]R’ (12)

where ap, a, bo and by are the extinction coefficients of two wavelengths. In this case, finding
the system model is similar to identify the values of ap, an, bo, and by given a set of input N pairs
{s!,R!,i = 1, N}. We formulate the problem as an optimisation with f = [a, a, bo, by] are the
unknown variables

N
p= arg;ninz Isi = S(B, o)1l (13)
i=1

We can derive the optimal solution for these variables by iteratively updating with a portion

. oS 1] 7] dS(bo) dS(b
of gradient f;11 = f; — yJ,, where J; = a(ﬁﬁ;f) = g(a‘g)) z(a“:) f?(b(;)) z(b:)

trix [49]. The choice of step value y has a critical impact on the performance. In the Levenberg and
Marquardt model, the step variable, called y, is a function of residuals as follows: y = (J7J +
AD1(JTr), where r = ﬁl llsi = S(B, R;)|| is the residual estimated at each iteration (T is the ma-
trix transpose operator). The AI term makes sure that J7J + AI is always invertible and lambda is
the damping factor used to control the time of convergence. In practice, lambd can be set to equal
to 1. Following this model, we optimise the extinction coefficients adopting the Lavenberg and
Marquardt algorithm. In particular, we derive the Jacobian matrix by taking the partial derivative
of each coefficient:

] is the Jacobian ma-

_|90S(a0) 9S(am) 0S(bo) 9S(bm)

- [ (9610 6aH abo 6bH

_ [(GH — bgR) (-ao +boR) R(bpR - ay) R(ao — boR)
- 9(p) 9(p) 9(p) 9(p) '
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ALGORITHM 2: Extinction coefficients estimation-based Levenberg-Marquardt optimization.

input: s, R, MaxlIte, €, - The set of ground truth SpO,, the absorption ratio R, maximum number of
iteration, minimum error and the damping factor.
output: - The optimal four coefficients f = [do, air, bo, bi]

Initialise values for ffy according to the expected wavelength.
/* Finding the optimal S/
for t = 0 — MaxIte do

re — XN (sf = S(Br.RY))

Jit1 < %ﬂ’[’m following Equation (14)

Prer < B+ 0T+ ADI(Tr)
if r < e then
| break;

end
end
return f;;

ALGORITHM 3: RANSAC optimization-based Levenberg-Marquardt model.

input: s, R, k, MaxIte- The set of ground truth SpO,, the absorption ratio R, the minimum number to be
inlier set and the maximum iterations.

output: 5- The optimal four coefficients f = [do, air, bo, bi]

Initialise values for f/* Finding the optimal %/
for t = 0 — MaxlIte do
/* Sampling a subset and verify possible inliers’/
X ={s9,R1,q = 1K} « SubSamplingPoints(s, R)
ﬁ, « Levenberg_Marquardt_Opt(X) using Algorithm 2
I} « Validate(ﬁt, {s,R}/ X)
if ||I;]| > k then

/* We may find a good model*/

ey « ValidateError(f;, s, R)

if e; < é then

| BePBré—e
end

end
end
return f;;

where g(8) = (agr — ao + (bo — bgr)R)?. We summarise the process of estimating the four coeffi-
cients as in Algorithm 2.

Recall that we are using components in off-the-shelf smartphone, i.e., flashlight and embedded
camera sensor, this results in intensive noises into our system. Thus, not all the pairs of s;, R; are
cooperative. Some of the pairs are redundant and therefore reducing the accuracy of estimation.
More importantly, as there is no prior information about the relation between s and R, blindly
justifying which pairs are useful for the model is one of the directions. However, such an ap-
proach cannot provide an optimised solution. Instead, we indirectly measure the information that
each data point contributes to the existing model. Then, we choose those pairs that have highest
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Table 1. Demographic Description of Participants

Participant Demographics
Age (years) 25-32 years old
Oxygen Saturation (%) | 82-97
Gender Ratio 3 male: 3 female
Ethnicity Asian: 4, White: 2

contribution as the inliers. Such technique is called RAndom SAmple Consensus (RANSAC). We
adopt this technique for our model and present the procedure as in Algorithm 3.

To summarise, a subset of data is randomly withdrawn from the whole dataset and proceeds to
the Lavenberg-Marquardt optimisation to obtain the possible coefficients. Then, we select points
that are less than 2% of error to be possible iniliers. If the total number of possible inliers is less
than a predefined k, it is qualified to compare with existing model with the input is the whole
dataset. The final output will have the smallest error among those candidates.

8 PERFORMANCE EVALUATION

In this section, we first present key results of performing the real-time SpO, measurement using
PhO, system. Next, we evaluate the sensitivity of PhO, to extract the usable and reliable PPG signal
from the images captured by the smartphone’s camera. By deploying the mobile application, we
further illustrate the physical efficiency of our proposed system in terms of power consumption
and processing time. Finally, we analyse the surveying of the users’ experience of using the PhO,
system to measure their SpO, level.

8.1 Experimental Methodology

To evaluate the performance of the PhO, pulse oximetry system, we conducted our experimen-
tal studies in a normal office environment and in hospitals. The light source is supplied by the
phone’s built-in flash with noise coming from the incandescent lights in the room. The participant
demographics of our in-lab experiment can be found in Table 1.

We tested our system (PhO,) altogether with (1) an FDA-approved, official in-hospital device
(Nellcor PM10N [37]), (2) a cheap fingertip pulse oximeter (FACELAKE CMS50E [7]), (3) Digidoc
app [15] on iPhone 6, and (4) iCare Health Monitor app [18] on Samsung Galaxy S5.

The Nellcor PM10N is provided by Children’s Hospital Colorado with the password for full
access to measure and manipulate patients’ data. Nellcor is one of the pioneer brands in manu-
facturing pulse oximeters and has been frequently used as ground truth evidence [9, 13, 30, 51].
Therefore, the device is creditable for giving baseline measurements in our experiments. On the
other hand, the two mobile applications on iOS and Android only provide discrete measurement,
thus the recorded data were noted down and aligned manually for the sake of comparison. This
experiment is tested on six subjects with various ages, ethics and genders. Each subject is asked to
follow a clinical instruction of breathing sequence in order to correctly reduce the blood oxygen
level, in which they are asked to exhale and inhale heavily for six consecutive times and hold their
breath up to their limitation. The exhale and inhale sequences help to release most of the air from
the lung, thus the SpO, reduction process in the subjects’ body can be observed easily. The whole
process takes thirty minutes and is repeated five times. The oxygen level of the subject is measured
simultaneously using our PhO; and the four devices described above (Figure 11 shows the setup
of all devices on the subject’s fingers). In the second phase of project, we successfully deliver our
prototype (Figure 12) to be tested in the hospital with real patients.
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Fig. 12. Overview of the PhO, prototype including functions of detecting abnormal PPG signal, movement
detection and pressure level indication.

To evaluate the effectiveness of new design in reducing heat from the flashlight, we use ther-
mocouple and hand-multimeter (Figure 13) to measure heat draining from three different designs:
single large tunnel, single small tunnel, and light distribution with and without optic bandpass
filter.

8.2 PhO; System Performance

In-Lab Testing. In this section, we evaluate the performance of PhO; within six subjects and report
the results comparing with the Nellcor PM10N. The experimental methodology is presented in an
earlier section (Section 8.1). For each subject, we record data continuously and report the result
for every second. As a result, 6 subjects account for 434 data points in total. Figure 14 presents the
fine-grained SpO; predictions generated by PhO, for each subject. The evaluation results show that
PhO; not only produces small error rates of SpO; level measurement but also illustrates the trend
of oxygen level. This level of detail has not been addressed with most of the current smartphone-
based approaches. The trend of oxygen level predicted by our system (blue line) is similar to the
measurement of Nellcor device. For example, in the case of the measurement of the fifth subject,
the estimated results by ground truth device starts at 96% and then goes up to 99%. Meanwhile,
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Fig. 13. Measuring heat coming out of the add-ons.

our system reports from 94% to 98%. In the last case, the subject drops the oxygen level to below
82%, which is the same as our prediction. The interesting point is that our system responds faster
than the ground truth because when the subject performs the hyperventilating and begins to hold
his/her breath, the oxygen level decreases right after that; when the subject starts to inhale, the
oxygen level increases. The patterns of results show that our system can predict and follow the
tendency of the SpO; level strictly even when oxygen level changes significantly.

Figures 15(a) and 15(b) summarise the evaluation of our system with respect to all subjects (each
individual and general in total). The system can measure the level of oxygen with 80th percentile
error less than 3.5%. The mean and standard deviation of the absolute error rate are 2.5% and 1.62%,
respectively. The mean absolute error rate is similar to that of well-known pulse oximeters, which
were reported to give the prediction with 2% of mean absolute error at normal condition [63].
In addition, the standard deviation of absolute error rate achieved by PhO, can be reduced by
averaging together many measurements over a period of time, before any decision would be made
about a patient’s condition. Therefore, the error rate of our system is sufficient for a home care
device which does not need very high accuracy. In some cases, physicians are only concerned when
it is below a certain threshold. For example, the Pediatric Asthma Score [50] identifies patients
as Severe if their blood oxygen level is lower than 90%. In addition, to have a better view on the
system performance, we conduct the test of Kendall correlation coefficients between prediction
and ground truth. Figure 15(c) displays the result with Kendall’s 7 equal to 0.72 showing that the
two variables are relatively matched. To avoid a dense cluster of points, we only mark a few data
samples in Figure 15(c) by a plus sign for illustration. In details, from subject 1 to 5, the error rate
is stable and close to the general case. This group of subjects includes different races, ages, and
genders, but their demographic characteristics do not affect our system function. In fact, the factors
that can affect the system from our observation is contact pressure and sensitivity of the system
with respect to light condition. Contacting pressure is managed by pressure detection algorithm
and the change of light environment is handled by the ROI detection and the design of our add-on.

The existing apps, on the other hand, represented by Digidoc (i0S) and iCare Health Monitor
(Android) show their performance in Figure 16 with all subjects evaluated in our system and the
groundtruth is captured by the Nellcor device. The mean absolute error of Digidoc and iCare Health
Monitor are 5% and 4.36%, respectively. The results clearly explain how the apps would fail to
keep track on low oxygen levels. Moreover, unlike the PhO,, they only operate as a one-time
measurement and thus, are unable to present continuous records.
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Fig. 14. Fine-grained evaluation on prediction of oxygen level of six participants.

N. Bui et al.

Evaluation in the Hospital. We present our results for the experiments in the hospital with six
patients. The prediction ranges from 85% to 94% and the Kedall correlation is 0.83 (Figure 17),
showing that our system can perform well in practical scenarios. We continuously measured data
on each patient and reported the result for every second. Over all, we received 611 data points in
total. Figure 18 illustrates the fine-grained detection for each patient. Even though the prediction
fluctuated more than the in-lab experiment, it still followed the trend of the oxygen saturation
level. The primary cause of this fluctuation is due to the body movement. Our subjects in the
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Fig. 17. Kendall rank correlation coefficient between PhO3 and ground-truth of the in-hospital evaluation.

hospital were mostly children, hence, usually were more active than the adults. The COMIRB 17-
1180 for this study was reviewed and approved under the requirements of the pre-2018 version of
the Federal Policy for the Protection of Human Subjects. The participants could not perform the
breath holding. Therefore, we had to look for the hypoxia patients whose oxygen saturation level
could drop below 90%. If they were children, their parent/guardian needed to read and sign the
consent. We cleaned our PhO; and the ground truth devices using sanitizer wipes before and after
the evaluation to prevent the spread of infectious diseases.

8.3 Sensitivity Analysis with In-Lab Evaluation

Impact of Wavelength Selection. Since our primary goal is to provide evidence that combining dif-
ferent layers of filters can extract the desired NIR lights. This section aims to assist our justification.
Relying on the natural phenomena of gradient descent is all about the search for the local maxima
in the set of possible solution. Obviously, the initial solution is the factor that helps to define the
performance of the optimisation. Our purpose of conducting the experiment is to look for the rela-
tion between the optimal solution and the wavelength selection. The expectation relies on the fact
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Fig. 18. Performance evaluation of experiments in hospital.

that only NIR wavelengths aligning with our optimisation model can provide a high prediction.
Starting at 610 nm and going down to 602 nm, the performance gradually decreases as shown in
Figure 21 which satisfies our assumption. The lights captured in that region cannot be the visible
lights since those wavelengths are reasonably fails to predict the oxygen level. In addition to the
optimisation model, the linear calibration shows its limited capability in dealing with high com-
plex problems. Specifically, Figure 22 shows that the average accuracy linear calibration is about
94% while the one with non-linear calibration can serve up to 97%. By looking at the CDF function,
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the efficiency of nonlinear calibration is even more remarkable since the confidence level of the
linear model to achieve an error rate less than 3% is only 10%.

Mitigating Users’ Pressure Issue. We collected data for the pressure hardness level from seven
subjects. Each subject was asked to record multiple videos with different finger postures while
using PhO,. Each video was processed by pressure detection algorithm (described in Section 6.1)
in order to classify each video frame into one of three pressure states. Figure 20 shows the mean
and distribution of calculated variance of Laplacian Image of each frame from one subject. The
results of the mean values between each of three states are clearly distinct. The algorithm can
process for every frame and in real-time.

Alleviate Phone’s Flashlight Heat. The original design without optic filter can heat up to 58.9
degrees Celsius, while the light distribution is only around 40.3 degrees as shown in Figure 19.
Including the optic filter, the heat drops down to 37.6 degrees with the light distribution design. In
general, the optic filter helps to keep the temperature low because the strong energy wavelengths
as UV are filtered out. The light distribution functions, as we expected, to avoid skin burn.

8.4 User Experience Survey

We asked the subjects to take a survey about their experience of using our PhO, prototype after
their experiment period. Specifically, our questionnaire concentrated on the comfort, safety, and
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Fig. 23. User Experience Questionnaire Results.

the usability of the device. Figure 23 shows all the questions and their results. The scale is from 1
to 5 corresponding to “Strongly Disagree” to “Strongly Agree”, respectively.

Overall, the results show the users’ agreement of being highly satisfied to use PhO; for the
SpO; level measurement. The reason given is because PhO; is friendly to use, quick to operate,
and lightweight to carry. Also, 6 in 12 subjects stated that our PhO, provides more comfort than
the existing commercial pulse oximeters. However, some of them raised their concern about the
high temperature generated from the flashlight after 10 minutes of continuously turning it on as
well as placing their fingertip on it. We believe that this concern will be eliminated in real-life
scenarios when PhO; is used in less than 5 minutes for each time of measurement. Over all, the
user study showed the possibility and promise of our PhO, device to be adopted by users who
require a management of their SpOs,.

9 DISCUSSIONS

Limitations. The first limitation is the long initialisation delay of the system. In the current design,
PhO;’s algorithms introduce undesirable delays to approximate the ROI, estimating pressure, and
SpO; measurement. With our current setup, the ROI takes 6 seconds, pressure detection requires
1 second, and SpO, measurement requires 6 seconds of data. This meant that the system will not
be able to output results for the first 12 seconds before it can monitor the SpO, level continuously.
Second, we only could collect data from 12 participants due to the current IRB limitation. We are
developing new IRB protocol to perform an extensive study with n = 60 subjects to evaluate PhO,
using hypoxia procedure (i.e., bringing the oxygen level of a subject gradually down from normal
range (95%-100%) down to extremely low range (65%-70%)) for validation. Last, we have only
tested PhO, on limited number of smartphone devices. Though the device-to-device variations
are considered from the design of our system, we would expect variations in the accuracy on
different hardware. Future study will include a much broader range of devices with different diode
for flashlight and camera supplier.

Potential Phone Case Design. Even though the current design is a plug-n-play prototype, we
intend to build a phone case that will always be attached to the phone. The phone case includes
a sliding filter that allows switching between the normal camera usage and measuring SpO, level
based on PhO, model. Since our design is power free and compact, users can measure the oxygen
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saturation level any time, unlike normal pulse oximeters which require an external power source
to support the LEDs and their circuit.

Future Applications. The techniques developed in this article have a potential to apply to other
sensing domains such as substance detection using mobile phone flashlight and camera. For ex-
ample, the same technique might potentially benefit anemia diagnosis and skin disease detection.
The ability to collect SpO; might allow PhO, to be used for cardiopulmonary disease (e.g., heart
failure and congenital heart disease have changed in oxygen level). More significantly, as moni-
toring SpO; levels is clinically standard for screening chronic respiratory diseases and assessing
their severity, our PhO; system can be used as a lightweight solution for chronic patients to check
their SpOy; level periodically. Additionally, by doing such the periodic SpO, check, our system can
further predict the upcoming health problem (e.g., asthma) and quickly react against the patient’s
health situation, which begins getting worse. For instance, the mobile app can automatically ac-
tivate a call to a medical doctor for a confirmation of his/her saturation level drops. As a result,
from those who need Telehealth monitoring, our PhO, system can provide cost-effective strategy
to support the clinical routine to follow up the patients. In addition to being mobile, smartphones
are ubiquitous and this technology could potentially bring this key clinical physical finding to the
global communities which are unable to purchase standard pulse ox technology due to the cost
or logistic constraints (e.g., third-world countries or remote geographical areas). Finally, not only
working independently, our proposed techniques can further be integrated into existing low-cost
sensing systems such as the in-ear physiological sensor developed in [38] to provide additional
data sources, which is useful for improving their prediction performance.

10  CONCLUSIONS

In this article, we presented PhO;, a phone-based oxygen level estimation system using COTS
phone’s camera and flashlight. Since the smartphones’ camera and flashlight are not designed for
this purpose, it leads to a number of challenges including the lack of IR light from the flashlight,
the lack of a mathematical model to convert camera-based intensity ratio to SpO; level, the noisy
signal captured by the camera, the unstable and undesirable pressure at the users’ finger contact
area and the strong heat generated by the flashlight. We provide a careful hardware design and a
set of algorithms to overcome these challenges and making phone-based non-invasive SpO, level
measurement possible. We also conducted a set of experiments to evaluate the performance of
PhO;. The evaluation results showed that PhO, obtained high performance of 3.5% of estimation
accuracy which is considered clinically sufficient by FDA standards. Also, the experiments in the
hospital achieve high correlation with the ground-truth with Kendall t equalling 0.83/1.0. Last,
we discussed the limitations of the current system, identifying its potential extension and future
workand highlighted the PhO; potential applications.
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