
Thermal-Depth Fusion for
Occluded Body Skeletal Posture Estimation

Shane Transue, Phuc Nguyen, Tam Vu, and Min-Hyung Choi
Department of Computer Science and Engineering, University of Colorado Denver

{shane.transue, phuc.v.nguyen, tam.vu, min.choi} @ucdenver.edu

Abstract—Reliable occluded skeletal posture estimation is a
fundamentally challenging problem for vision-based monitoring
techniques. This is due to several imaging related challenges
introduced by existing depth-based pose estimation techniques
that fail to provide accurate joint position estimates when the line
of sight between the imaging device and the patient is obscured by
an occluding material. In this work, we present a new method of
estimating skeletal posture in occluded applications using both
depth and thermal imaging through volumetric modeling and
introduce a new occluded ground-truth tracking method inspired
by modern motion capture solutions. Using this integrated
volumetric model, we utilize Convolutional Neural Networks
to characterize and identify volumetric thermal distributions
that match trained skeletal posture estimates which includes
disconnected skeletal definitions and allows correct posture esti-
mation in highly ambiguous cases. We demonstrate this approach
by correctly identifying common sleep postures that present
challenging cases for current skeletal joint estimations, obtaining
an average classification accuracy of ∼94.45%.

I. INTRODUCTION

Accurate and reliable occluded skeletal posture estimation
presents an interesting challenge for vision-based methods
that heavily rely on depth-imaging [1], [2] to form accurate
skeletal joint estimations [3], [4]. Modern skeletal estimation
techniques provide a solid foundation for skeletal estimations
of users in non-confined areas with no visual occlusions,
however these techniques are not well suited for applications
that include visual obstructions such as respiration and sleep-
based studies where patients are heavily occluded by both
clothing and common forms of bedding. The clinical signifi-
cance of introducing an occluded skeletal posture estimation
that handles these cases is illustrated through the lack of
accurate estimate solutions used for wireless tidal volume
estimation [5] with clothing occlusions, long-term sleep-based
respiratory monitoring [6], [7], [8] with bedding occlusions.

While recent depth-based imaging methods [9], [10] have
begun exploring how to solve this problem, they still lack
two primary fundamental components of occluded posture
estimation: (1) the ability to provide an accurate ground-truth
with an occluding medium present and (2) the ability to deal
with extensive depth-surface ambiguities. These ambiguities
and direct occlusions incurred through depth imaging dictate
that an individual depth surface provided by these techniques
is insufficient to provide a reliable means of estimating an
occluded skeletal posture, and in most cases completely fail
to identify obscured skeletal joints. In this work, we explore
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Fig. 1. Experimental setup for detecting occluded skeletal joints that define
a patient’s posture with occlusions from standard bedding. Emphasis: The
proposed thermal-depth fusion skeletal estimation prototype that generates
and reconstruct the 3D thermal distribution of the patient’s occluded posture.

how the limitations of depth images can be supplemented
through integrating thermal imaging to introduce new methods
in occluded skeletal posture estimation.

Modern digital imaging devices contain several alternative
forms of imaging that utilize different wavelengths of the
electromagnetic spectrum that are capable of providing infor-
mation about internal skeletal structures through occlusions.
However, for both practical applications and in medical prac-
tice these imaging techniques are not well suited, convenient,
or safe for extended exposures over long periods of time, as
is common in most sleep studies. To strike a balance between
safe and reliable imaging techniques that allow us to gain
information about the occluded skeletal posture of the patient,
we develop a real-time posture estimation derived from both
depth and thermal imaging with the objective of providing a
reliable means of estimating occluded skeletal postures.

In this novel approach to occluded skeletal posture estima-
tion, we introduce three primary contributions: (1) we present
a thermal-based marker system for obtaining an occluded
skeletal ground-truth posture estimate derived from modern
motion capture techniques for defining occluded skeletal joint
positions, (2) develop a volumetric representation of patient’s
thermal distribution within an occluded region, and (3) intro-
duce a coarse-grained skeletal posture estimation technique
for identifying joint positions of visually obscured patients.
By addressing the challenges in occluded thermal imaging
and introducing a robust volumetric model for posture es-
timation, we evaluate the proposed method by assessing its
ability to correctly identify several common sleep postures and
generate accurate skeletal joint positions based on a patient’s
completely occluded joint positions.



II. RELATED WORK

Skeletal posture estimation from imaging devices is a field
within computer vision that has received an extensive amount
of attention for several years since the introduction of widely-
available depth-imaging devices. Through the development of
several devices that support high-resolution depth imaging,
depth-based skeletal estimation has become a robust and
mature method of providing joint and bone-based skeletal
estimations. Notable contributions to this work include both
generations of the Microsoft Kinect, associated depth-based
algorithms, and the extensive set of work aimed at improving
these skeletal estimations. While these existing techniques
are well explored and reliable for most applications, they
are inherently ineffective for posture estimations that include
visual occlusions like those encountered in sleep-based studies.

Depth-based Skeletal Estimation. The pioneer work for
depth-based skeletal estimation from a single depth image for
the Microsoft Kinect devices [3], [4] utilized a combination
of both depth-image body-segment feature recognition and
training through Random Decision Forests (RDFs) to rapidly
identify depth pixel information and their contribution to
known skeletal joints and hand gestures, as introduced with
the Kinect2. Modern skeletal estimation techniques are built
around a similar premise and utilize an extensive number
of newer devices that provide high-resolution depth images.
These techniques utilize temporal correspondence, feature
extraction, and extensive training sets to quickly and robustly
identify key regions within a human figure that correlate to a
fixed number of joint positions that form a skeletal structure
of the user. The images in Figure 2 provide an illustration
of the most common skeletal configurations and associated
estimation results from recent techniques.
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Fig. 2. Skeletal posture estimations from recent techniques from the Microsoft
Kinect, Primesense OpenNI (a, c), and improvements (b, d) by [3] that
utilize depth-imaging to accurately identify joint positions in non-occluded
applications. These methods have been further refined and extended with the
introduction of newer depth-imaging devices such as the Microsoft Kinect2.

These techniques have become increasingly robust and now
provide highly accurate joint estimations within the well
established constraints of these approaches. These constraints
minimize assumptions about the free movement of the human
skeleton and provide reasonable joint movements. However,
these techniques also provide a set of assumptions including:
background data can be quickly segmented (removed), the
user is relatively isolated within the depth image, and most
importantly - the line of sight between the device and the
user is not obstructed. These assumptions are integrated into
the foundation of these approaches, therefore the use of these

methods within sleep-based studies with occluding materials
covering the patient are not valid under these constraints.

Occluded Skeletal Posture Estimation. Recent vision-based
techniques have introduced an alternative method that relies
on a surface prior to allow skeletal posture estimations that
are recorded before the occluding medium is introduced [9].
This surface prior (depth-image) is then used as a collision
model within a physical simulation of a cloth that represents
the occluding surface to provide an approximation of what
the underlying posture would look like given the simulated
cloth model occluding the patient. However, there are several
potential problems with this approach: (1) the simulated cloth
under gravity model may not provide realistic behaviors such
as folding and tucking, (2) body movement may modify the
blanket for instances not covered in the simulation, and (3)
the patient may move and create additional wrinkles, folds,
layering, self-collisions, and complex interactions between the
patient and the cloth model. While this method provides a
good alternative for depth-imaging approaches, it is difficult
to ensure that the simulated cloth is consistent with real-world
deformation patterns and cannot emulate complex patent to
blanket interactions that may be observed.

Alternative methods derived from signal and image process-
ing [10] have also been introduced in an attempt to identify a
patient’s posture based on the spatial domain patterns that can
be extracted by processing cross-sections of the bed surface
using the Fast Fourier Transform (FFT). The objective of this
approach is to identify the spatial patterns common to most
postures and then identify them based on these traits. How-
ever, similar to other depth imaging approaches, the surface
data provided through a surface point-cloud does not contain
accurate information about the posture of the patient within the
occluded volume. Therefore in occluded applications, the high
level of surface ambiguities makes depth-based techniques ill-
suited for accurately estimating skeletal joint positions.

Thermal Image Posture Estimation. The use of thermal
imaging for skeletal posture estimation has not been exten-
sively utilized due to the fact that thermal images do not
provide a good estimate of the spatial coordinates required
for skeletal joints. Early work presented in [11] developed a
simple algorithm for detecting the skeletal structure within a
two-dimensional image, but the applications of this method are
limited and cannot be utilized to form a 3D representation of a
patient’s posture. Recently, there has been limited exploration
into thermal-based skeletal estimation, however the technique
has been used for detecting [12] and tracking generalized
human behaviors [13], [14] which include movement and very
generic postures such as walking, lying, and sitting. However,
none of these techniques have explored combining depth and
thermal imaging to improve skeletal estimates especially in
cases where occlusion makes depth-only methods invalid.
Therefore, to address the introduction of an occluding material
within skeletal estimates, we fuse both thermal and depth
imaging to provide a means of generating a thermal model
of the patient’s volume enclosed by the occluding medium.



III. OCCLUDED POSTURE THERMAL CHALLENGES

The extensive depth of research used to provide reliable
techniques for accurate joint estimates using single depth
images has generated a significant number of solutions for
posture estimation in occlusion free applications. With the
introduction of occlusion mediums, the addition of thermal
imaging to assist in the identification of a patient’s skeletal
posture provides an intuitive extension of these techniques.
However, with the introduction of markerless skeletal posture
estimation and visual occlusions, thermal imaging retains an
extensive set of challenges. In this section we enumerate
several primary challenges associated with thermal imaging
that greatly complicate thermal-based skeletal estimation.

Occluded Ground-truth Estimation. One of the prominent
challenges with establishing an algorithm for occluded posture
estimation stems from the inability of current vision-based
approaches to define an accurate ground-truth of an occluded
skeletal posture. This is due to the use of imaging wavelengths
that are blocked by specific wavelength opaque surfaces which
makes most vision-based techniques inadequate for visualizing
internal structures occluded by surface materials. This includes
both the visible spectrum of RGB images and the short infrared
wavelengths used for depth imaging. Therefore, for skeletal
posture estimation with surface occlusions, the process of
determining a ground-truth estimation of the patient’s posture
is in most instances difficult or completely intangible.
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Fig. 3. Skeletal posture estimation challenges associated with thermal
imaging. The image in (a) illustrates an ideal non-occluded thermal image but
illustrates non-uniform thermal distribution of a patient’s thermal signature, (b)
provides an illustration of heat marks left by a patient’s arm movements, (c)
illustrates thermal ambiguities of the patient during motion, and (d) illustrates
the patient’s residual heat left when the patient has been removed.

Contact Regions. The thermal conductivity exhibited by a
material near a heat emitting source can be simplified and
modeled using two different thermal transfer states: (1) a non-
contact state which defines a scalar distance that separates
the source and the receiving material and (2) a contact state
where heat transfer is greatly increased due to the thermal
contact conductance between the two materials. In the first

case, thermal conductance is reduced and defined as a function
of the distance between the emitting surface and the receiving
material which depends on the ambient temperature, tempera-
ture of the two objects, and the material composition of both
objects. This is true for the second case, however due to the
contact surface, the thermal conduction is greatly increased,
leading to a substantial increase in thermal intensity. Therefore
to accurately describe an object’s thermal contacts, the shape
of its surface, and emission intensity from a thermal image, the
physical properties of all materials must be precisely modeled,
which is impractical for patient-based applications.

Limb Occlusions. As with all single perspective depth-based
posture estimations, occlusions made by specific poses incur
constraints on the accuracy of the skeletal posture estimation
due to limbs occluding other joints within the depth image.
Additionally, with the introduction of an occluding material
tent-effect, limb position may contribute to a significant loss
of information about other skeletal joints due to the increased
occlusion volume introduced by the shadow of the occluded
material within the depth image.

Multi-Layer Occlusions. The apparent thermal distribution
of an occluded surface is directly influenced by both the
distance and temperature of the emitting surface, however
the number of occluding material layers between the thermal
device and the emission source introduces additional erroneous
ambiguities in the recorded thermal image. As materials are
placed on the patient, including clothes and bedding, the
materials may overlap in unpredictable ways leading to sharp
distinct features within the thermal image.

Intractable Heat-to-Surface Modeling. Identifying and gen-
erating an accurate surface model exclusively through the use
of thermal imaging is an ill-founded inverse physics problem.
This is because there is inherently an ambiguous relationship
between measured thermal intensity and the emission surface
that cannot be directly used to identify a spatial definition of
the emission surface. Thus depth-imaging remains a prominent
requirement for spatial modeling.

Non-uniform Heat Distributions. The thermal signature of
the human body has a substantial natural variation across
the surface of the skin that contributes to non-uniform heat
distributions. The premise of any thermal-based approach
to skeletal posture estimation assumes that the emission of
thermal energy from the surface of the skin is sufficient to
separate from both the background and other materials near
and in contact with the skin; however due to the non-uniform
distribution of heat through different skin regions and material
coverage, thermal intensities lead to ambiguities between the
patient’s skin and surrounding materials.

Movement and Residual Heat. As a challenge uniquely
associated with thermal imaging, thermal contact and residual
heat play a critical role in the image analysis of patient
postures. During the movement event and for a short period
of time after the movement, thermal intensities may indicate
false positives in posture estimations due to residual heat.



IV. METHOD OVERVIEW

To provide a reliable means of estimating occluded skeletal
postures in any vision-based technique, the proposed method
must address the challenges presented by the data acquisition
methods used create a solid foundation for performing accurate
joint estimations. An immediate extension to current depth-
based skeletal estimation techniques is the integration of
thermal data to both identify and refine potential joint loca-
tions by analyzing thermally intense regions of the body and
limiting ambiguities within the depth image to provide better
joint estimates within the occluded region. However, while
this approach of combining both depth and thermal image
information alleviates some of the challenges and ambiguities
associated with depth-imaging, it also incurs the numerous
thermal challenges listed within Section III. Therefore to
provide a reliable posture estimation algorithm based on these
imaging methods, we mitigate the challenges introduced by
each device by forming a new thermal-volumetric model of
the patient’s body that can provide a robust foundation for
thermal-based skeletal joint estimates.

A. Thermal Volumetric Posture Reconstruction

Volumetric reconstruction for posture estimation refers to
the process of identifying and generating the extent and
geometric characteristics of the patient’s volume within the
loosely defined region constrained by a depth-surface. This
occluded region within the surface will be used to provide
what we define as the posture-volume of the patient. This
volume is strictly defined as the continuous region under the
occluding surface that contains both the patient and empty
regions surrounding the patient that are visually obscured. To
define a posture estimate based on this volumetric model, we
associate a fixed set of correlated skeletal joint positions within
the observed thermal distribution of this volume. This allows
a skeletal estimate to be identified from a known (trained)
thermal distribution which represents the patient’s posture
under the occluding medium. Figure 4 provides an overview of
this ideal posture model, the discrete volume approximation,
and skeletal joint structure defined by this model.
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Fig. 4. Volumetric reconstruction of an ideal skeletal posture. The image in
(a) illustrates a discrete approximation of the patient’s volume. The image
in (b) provides an illustration of the mapping between a voxel representation
(black dots) of this volumetric data and the ground-truth skeletal estimate of
the posture (illustrated as a set of joints and associated bones).
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Fig. 5. Overview of the proposed approach for reconstructing the volumetric
thermal data that contributes to the occluded skeletal posture estimation. This
includes the generation of the volumetric data with the skeletal ground-truth
for training and the real-time data with the provided head joint used during
the occluded posture estimation process.

This model shifts the foundation of the skeletal estimation
from identifying isolated joints in the two-dimensional imag-
ing domain to a three-dimensional voxel model that describes
both the volume of the occluded region containing the patient
and thermal distribution within this volume due to the heat
radiated by the patient’s skin. This form of modeling provides
a complete 3D image of the patient’s posture within the
occluded region as an identifiable thermal distribution that
can be assigned to an associated skeletal estimates that may
contain visually ambiguous joint positions through training.

The development of the volumetric posture model is moti-
vated from three primary observations based on patient thermal
images: (1) the process of identifying joint positions from
thermal images projected onto the depth surface is highly
unreliable due to contact region ambiguities, layering, and
non-uniform heat distributions, (2) intense thermal regions
within the image are generated by both joints and arbitrary
locations on the patient’s body, and (3) joints that have a
separation distance between the patient’s skin and the occlud-
ing material may be visually and thermally occluded, meaning
that they are not visible, but reside within this volume. Due
to these commonly occurring conditions that are not well
handled by existing methods, the proposed method is based
on creating a correlation between the patient’s volumetric
thermal distribution and an associated skeletal posture. Based
on this correlation, if the known skeletal joint positions are
provided for the observed thermal distribution, we can estimate
the patient’s skeletal posture even when the subject is highly
occluded, has several ambiguous joint positions, or the skeletal
components are disconnected.

B. Algorithm Overview

The premise of this approach is to reconstruct the unique
volumetric thermal distribution of the patient and correlate this
posture signature with an associated set of joints that defines
the patient’s corresponding skeletal posture. The introduction
of this process provides a robust method of identifying skeletal
estimates on volumetric data that contains unique thermal
patterns that are more reliable than depth features within a
recorded point-cloud surface. Therefore, based on our ability



to reliably reconstruct this thermal distribution and associated
skeletal structure, the resulting correlation is then used to
populate a training model of discrete posture variants that can
be used to detect a patient’s subsequent postures. A high-level
overview of the thermal-depth fusion process used to generate
a thermal posture signature for a patient is defined below:

1) Thermal Cloud Generation (Depth + Thermal)
2) Patient Volume Reconstruction (Sphere-packing)
3) Surface Heat Propagation (Extended Gaussian Images)
4) Volumetric Heat Distribution (Thermal Voxel Grid)

This process is then divided into two primary directions:
(1) training for the correlation between the skeletal ground-
truth and the associated thermal distribution and (2) the
identification of input distributions to retrieve the patient’s
associated skeletal posture. This forms two different tracks
within the core algorithm of our approach which are defined
within the data-flow of our technique presented in Figure 5.

V. DEVICES AND DATA ACQUISITION

To facilitate a practical hardware prototype that incorporates
these two imaging techniques, the design incorporates two
low-cost devices that provide reasonable image resolutions
for sleep-based posture estimation within a controlled environ-
ment. Our prototype includes the Microsoft Kinect2 for depth
imaging and the Flir C2 hand-held thermal imaging camera.

A. Thermal-depth Fusion Prototype

The Kinect2 provides a depth-image with a resolution of
512x424 and the C2 contains an 80x60 thermal image sensor
array which is up-sampled to an image size of 320x240. To
configure the overlapping viewable regions provided by each
device, we have developed a single aluminum bracket to mount
the two devices into a simple prototype as shown in Figure
6. Based on the point-cloud data provided from the Kinect2
depth-image, we integrate the thermal intensity at each point
from the corresponding point within the up-sampled thermal
image provided by the C2 to generate the thermal-cloud of the
volume enclosing the patient due to the occluding material.

(a) (b)

(c) (d)

Fig. 6. Thermal posture device prototype. The two devices (Kinect2, C2) are
mounted with a fixed alignment provided by the bracket shown in (a). The
images in (b-d) illustrate the mount attached to the bed rail with both devices.
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Fig. 7. Thermal posture ground-truth and training suit (a) with attachable
metal spheres (b). The suit is worn during the training process to identify the
relationship between the patient’s thermal volume and joint positions (c).

The alignment of the images provided by these devices
requires further image processing due to the vastly different
field-of-view (FOV) provided by each device. Therefore we
model the alignment transformation of the two camera based
on a simple linear transformation as a function of the distance
to the bed surface. Additionally, due to the limited FOV of
the C2 device, we rotated the device by 90[deg] to provide
the largest overlapping field-of-view possible.

B. Occluded Skeletal Estimation Ground Truth

One of the prominent challenges introduced with occluded
skeletal posture estimation is the inability of most vision-based
techniques to provide a reliable ground-truth estimation of
the patients skeletal posture while the occluding material is
present. For imaging techniques, this is a direct result of the in-
terference or complete occlusion of the patients posture due to
the external surface properties of the material that are obtained
through using limited regions of the electromagnetic spectrum
(such as the visible or infrared wavelengths). The reflection
based nature of these techniques minimizes the ability to
correctly infer surface features that correctly contribute to the
patient’s occluded posture. While other methods utilizing these
reflection-based imaging techniques have introduced interest-
ing ground-truth workarounds for approximating the surface
behavior of the occluding surface [9], this remains a significant
challenge in occluded posture estimation methodologies and
evaluation models.

To address this challenge we introduce a new thermal-
based skeletal ground-truth derived from common motion-
capture systems. As with common motion capture systems,
this simple thermal marker system is designed from a standard
form-fitting suit equipped with 9 solid nickel spheres with an
approximate diameter of 3.0[cm]. These solid metal spheres
are attached to the suit at various locations that correspond to
the joint positions of the patient. During the training process,
these markers emulate the methodology of tracking known
joint positions. This provides a highly-accurate method for
providing a ground-truth of the patient’s posture while an
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Fig. 8. Thermal surface point-cloud acquisition. The sequence of images illustrate the data collected from both the Microsoft Kinect2 and Flir C2 thermal
devices to obtain thermal and surface point-cloud data. The images (a-d) illustrate the collection of the infrared, depth, thermal, and thermal surface respectively
for a non-obscured view of the patient. The images (e-h) illustrate this data sequence for the same supine skeletal posture with an occlusion material present.
Surface details provided by depth imaging (f) fail to provide a reliable means of estimating skeletal joints (for example, identifying hand joint positions in
(e-f) is extremely difficult). Using the proposed ground-truth estimation, we can assert known joint positions through occluding materials.

occluding surface is present. The image provided in Figure
7 illustrates the simple design of the training suit with the
attached solid nickel spheres used in the training process.

The result of the thermal skeletal ground-truth is the product
of a simple adaptive thresholding and a connected-component
algorithm that identifies the thermally intense regions of the
spheres within the image. In the resulting thermal-cloud, the
spheres appear as small white regions indicating the locations
of the joint positions, as shown in Figure 8 (g). For each
grouping of points belonging to a joint, the unique joint
position is calculated as the center of mass of this cluster.
For labeling we employ a simple a semi-automated tool to
assist in the identification of the skeletal joints for the training
data. Based on the provided adjacencies, the system will
automatically generate the required skeleton. For occluded
joints, we introduce a partial skeletal structure (Figure 9).
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Fig. 9. Thermal skeleton ground-truth. The ground-truth skeleton presented
in (a) illustrates a complete skeletal posture based on every supported joint
being identified. The skeleton presented in (b) represents the patient in a left
facing posture with the right shoulder joint completely occluded.

The disconnected skeletal structure we provide presents
a best-case posture estimate based on the provided thermal
information within the model. This allows us to provide a
partial solution for instances where the occluding material may
prevent several joints from being recognized in both thermal
and depth images, for which we have no obtainable solution.

VI. VOLUMETRIC THERMAL MODELING

Sleep-study occluded posture estimation offers a large re-
duction in both the degrees of freedom in both the patients
movement and the volumetric region they occupy. Based on
the assumption that the patient resides at rest within a limited
region and the occluding surface is covering the patient, this
region of interest is easy to identify and model as a continuous
enclosed volume as illustrated in Figure 8 (f). This is achieved
through the use of several assertions about the experimental
setup: the patient resides within the bounded region and is
supported by a rest surface, the occluding surface is supported
by the patients body and does not penetrate through the volume
of the body, the human body is contiguous, and the patient’s
face is visible and unobstructed. In this section we build
on these assumptions to formulate the three-stage process
of building the patient’s posture volume and generating the
associated volumetric model: (1) volume enclosure, (2) sphere
hierarchy generation, and (3) the generation of a voxel grid that
represents the thermal distribution of the patient’s posture.

A. Posture Volume Enclosure

To begin the process of imposing constraints on the possible
joint locations within the occluded region, we enclose the
volume between the recorded depth image and the known bed
surface. Since the enclosed volume is a direct function of the
occluded surface model provided by the point-cloud and the
bed surface, we assume that the contact surface of the bed can
be obtained by a simple planar model or through a preliminary
scan of the bed surface taken while patient is not present.

B. Volumetric Sphere Hierarchy

To model the internal volume of the patient behind an
occluded region, we introduce a simple and robust method
for populating the area using discrete unit spheres through a
methodology derived from simple sphere-packing. Generating



this volume requires an enclosed region that is defined by the
point-cloud data provided by the imaging devices included in
the proposed prototype. From the enclosed region occupied by
the patient defined by the beds surface and the recorded depth
image, the volumetric reconstruction process used to define the
occluded volume is derived from the 3D grid-based sphere-
packing algorithm used to generate a spherical hierarchy.

This methodology is used as the basis of the volume
reconstruction algorithm due to two assertions of the cloud
that encapsulates volume of the patient: (1) the volume may
be concave and contain complex internal structures and (2)
the internal region may contain holes or regions that further
reduce the patients potential joint positions due to volumes
that are too small to occupy the associated joint.

(a)

Hierarchy Root

(b)

Fig. 10. Two-dimensional variant of the volumetric reconstruction algorithm.
The image in (a) illustrates the hierarchy root and the propagation directions
and (b) illustrates the limitation of the propagation by the surrounding point-
cloud and associated thermal intensities of the depth points.

Sphere-packing is a simple algorithm that propagates unit
spheres through a hollow region until some boundary con-
ditions are met. This is based on three primary components
commonly defined for sphere-packing: (1) the start position
of the propagation, (2) the method of propagation, and (3) the
boundary conditions must be defined for each sphere added to
the volume. For (1), the starting position of the propagation
is defined as the center of mass of the patients head. From
our assertion that the patients head will always be uncovered,
we can easily segment and identify the patients head within
the thermal image due to the heat intensity of the patients
face. The method of propagation (2) is derived from a bread-
first search pattern. For the boundary conditions (3) of the
propagation, we consider two primary boundaries: the point-
cloud that encloses the region and regions that have very
limited thermal intensities. This limits the propagation of the
volume to regions that contribute to the patient’s posture. The
image in Figure 10 illustrates this thermal 2D sphere-packing
algorithm. For our three-dimensional skeletal posture data, the
root position resides within the head of the patient.

C. Thermal Extended Gaussian Images (TEGI)

Extended Gaussian Images (EGIs) represent a mapping of
surface normals of an object onto a unit sphere through a sim-
ple projection. This formulation provides an alternative form of
representing complex geometric structures using a simplified
form while maintaining the original geometric representation.
To reduce the resolution of the volumetric data provided by
the thermal-cloud, we introduce the use of Thermal Extended

Gaussian Images (TEGIs) to represent a projection of localized
thermal intensities from the recorded thermal images onto the
surfaces of the unit spheres within the sphere hierarchy.

TEGIs are introduced to establish a transfer function be-
tween the known recorded surface temperatures and the vol-
umetric data represented by the sphere hierarchy within the
occluded region. This function represents a conversion of
the 2D thermal data residing within the surface lattice to
a volumetric representation of the transferred heat and an
estimate of the source direction. This allows the thermal data
of the recorded surface point-cloud to be transfered to the
newly generated internal volume that represents the patients
potential posture constraints. Based on this model, TEGIs are
used to represent both thermal intensity and directionality of
the observed thermal distribution.

Each surface sphere within the hierarchy contains an TEGI
that is parametrized by two characteristic features based on the
on the sample points residing within the local neighborhood
(2r) of the sphere: (1) the thermal intensity t and (2) the
Euclidean distance d between the contributing point and the
sphere. This provides a parameterized distribution that models
the local heat distribution across the surface of the recorded
thermal cloud as a 2D Gaussian function TEGI(t, d):

TEGI(t, d) = αte

[
−x2/2(βd)

]
+
[
−y2/2(βd)

]
(1)

Where the parametrization of the standard Gaussian distribu-
tion is defined by the thermal contribution t and scaled by a
scalar thermal multiplier α provided by the thermal image. The
distribution of the function is then modified by modeling σ2 as
the Euclidean distance between the point d and the center of
the sphere with a distance scalar multiplier β where the value
for the scalar multiplier β is defined by the device distance to
the surface of the patient.

(a) (b)

Fig. 12. Extended Gaussian Image (EGI) spherical mapping [15]. For each
thermal point within the recorded thermal point-cloud, the projection of the
point will produce a location on the unit sphere that will reside within a
bounded surface region. These surface regions are defined by the height and
width of the EGI map (b). The corresponding surface regions in (a) are
displayed in the two-dimensional representation in (b).

The primary requirement of generating a TEGI is a pro-
cedure for projecting and mapping thermal points from the
thermal cloud onto the surface of a unit sphere. To achieve
this, a discrete form of the unit sphere is divided into discrete
regions following the approach defined in [15] for automated
point-cloud alignment. Then for each point within the local
neighborhood, the point is projected onto the surface of the
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Fig. 11. Volumetric thermal model process overview. The image in (a) illustrates the raw thermal cloud, (b) illustrates the enclosed region of this cloud, (c)
illustrates the generated internal thermal distribution of the patient, and (d) provides the result of both the reconstruction and the thermal propagation through
the enclosed volume. The thermal distribution in (d) will then be provided to the training algorithm with an associated skeletal estimation.

sphere and then assigned a 2D region index within the TEGI.
This index will be used to identify the peak of the Gaussian
distribution that will be added to the discrete surface repre-
sentation of the sphere. Since the resolution of the Gaussian
is discretized on the surface of the sphere, we sample the
continuous parameterized Gaussian function at a fixed interval
and allow the distributions to wrap around the surface of the
sphere. The image in Figure 12 provides an illustration of how
points are projected to the surface of a unit sphere and then
used to generate the positions of the Gaussian distributions
within the surface image of the sphere.

The contribution of multiple points within the same local
neighborhood is accounted for through the addition of several
different Gaussian distributions to the surface of the sphere,
each with its own parameterization derived from its relative
position to the sphere and its thermal intensity. The resulting
TEGI is then defined as the sum of the contributions from all
local points within the defined search radius. This defines the
total thermal contribution of sphere S to the volume for the
set of points within the spheres local neighborhood N:

S(p) =

n∑
i=0

n∑
j=0

αpte
−x2

i /2(βd)+−y2j/2(βd), ∀p ∈ N (2)

Geometrically, the contribution of each points thermal in-
tensity to the surface of the sphere also incorporates the
directionality of the thermal intensity of the point in the
direction of the sphere. This provides a rough estimate as to
the direction of the source of the thermal reading identified at
the surface point. While this approximation of the heat transfer
function does not provide an accurate model of the inverse heat
transfer problem, it provides an effective means for estimating
the inverse propagation of the heat measured at the recorded
depth-surface to define the thermal signature of the volume.

(a) (b) (c)

Fig. 13. Thermal Extended Gaussian Images for the distribution of heat due
to surrounding thermal points. The image in (a) represents the discrete TEGI
map of the sphere surface that contains the thermal contribution of two points,
(b) illustrates the TEGI in 3D space with the two contributing points, and (c)
provides a rendering of the TEGIs within the sphere hierarchy used to show
the thermal propagation from the surface scan.

These TEGIs are then evaluated for each sphere in the
spherical hierarchy that reside within the surface of the thermal
cloud. The resulting thermal intensity of each sphere is then
used as the seed for propagating the observed heat through the
patient’s posture volume. These thermal values are then used
generate a three-dimensional voxel model of the patients heat
distribution.

D. Thermal Voxel Grids

To integrate the thermal contribution of each TEGI within
the constructed sphere hierarchy, the grid-based nature of the
propagation algorithm used to generate the volume is used
to populate a scalar field of the thermal values into a voxel
grid. This fixed-dimension voxel grid provides the thermal
distribution of the internal volume of the patient used to
represent the thermal distribution of a unique posture. The
thermal distribution residing within the voxel grid is then used
to represent the patient’s posture as a 3D image that can be
classified based on a pre-trained set of postures. An example of
the resulting 3D image illustrating the patient’s posture within
the voxel grid is illustrated in Figure 14 (d).

VII. THERMAL SKELETAL VOLUMETRIC TRAINING

The underlying correlation between volumetric thermal dis-
tributions and skeletal joint positions used to formulate our
posture estimation is defined by two primary factors: (1)
the skeletal ground-truth of a patients posture and (2) the
thermal distribution of the patients volume within the occluded
region. Together, these two components form the training
and identification data used to estimate the occluded skeletal
posture of the patient within an occluded region.

Neural Network Structure. There are several types of
training methodologies and models that have been designed
for three-dimensional medical image classification. Of these
methods, Convolutional Neural Network (CNNs) [16] and
Deep Neural Networks (DNNs) [16] are most commonly
used methods for identifying complex structures within 3D
images. In the proposed method, we have selected a feed-
forward CNN-based network structure to handle the higher
dimensionality of the 3D thermal voxel grid we generated
within Section VI. This is due to the dense representation of
the patient’s thermal distribution rather than a feature-based
estimation which would better suit a DNN-based method.
Therefore we allow the CNN to generate features through
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Fig. 14. Skeletal posture estimation results for six standard sleeping postures. The first image in each sequence provides the ground-truth skeletal posture,
followed by the middle image that illustrates the thermal distribution used to obtain the trained skeletal posture rendered in the last image of each sequence.

sequential filters that identify thermal-specific classification
metrics. In our method we implement CNN with 4 fully-
connected layers with rectified linear units (ReLUs) which
obtain results faster than traditional tanh units [17]. Addi-
tionally, since there is no analytical method to determine the
optimal number of convolutional layers for a given application,
our network structure is determined empirically based on the
correct identification of posture states.

Training Model. We trained CNNs to detect 6 postures of the
patient based on our generated thermal voxel grid images. The
classification label (one of six postures) is assigned for each
thermal distribution. 60 thermal voxel grid images are used
for training while 180 other distributions have been used for
testing. We avoid overfitting through two common methods:
First, we apply Dropout to randomly drop units (along with
their connections) from the neural network during training
[18], which prevents neurons from co-adapting. Second, cross-
correlation is applied to stop the training when the cross-
validation error starts to increase, leading to our termination
condition. Additional convolutional layers generally yield bet-
ter performance but as the performance gain is reduced, we
see diminishing returns in the training process. Therefore the
number of connected layers required to avoid overfitting is
commonly defined as two as referred in [16].

VIII. EXPERIMENTAL RESULTS

Driving the experimental results of the proposed volumetric
model for skeletal posture estimation, we identified several
common sleep postures that exhibit a wide variety of skeletal
joint positions that form both partial and complete posture
estimates due to the visual occlusions introduced by the use
of a standard blanket. Based on these common postures,
our objective is to collect the skeletal ground-truth, generate
the associated thermal distribution, and then correlate this

distribution with the recorded skeletal joint positions for the
patient’s training set. From the generated training set, we can
then estimate the patient’s approximate skeletal posture solely
based on their current thermal distribution.

Standard Posture Estimation. The primary qualitative metric
for both identifying a patient’s posture and associated skeletal
structure in occluded regions is based on the ability to recog-
nize the posture and the accuracy of the generated skeletal
joints used to represent the patient. In these experimental
results, we perform a quantitative analysis for the accuracy
of the of this method with respect to identifying the correct
posture based on the generated thermal distribution. The image
sequences in Figure 14 (a-f) illustrate six common postures
along with their associated ground-truth skeletal measurements
as the first image within each sequence. The posture sequence
for these experiments is defined as: (a) face up + arms at the
side, (b) face up + hands on chest, (c) face left + straight arms,
(d) face left + bent arms, (e) face right + straight arms, and (f)
face right + bent arms. The second image within each sequence
provides the rendered thermal distribution of the patient based
on the voxel data generated from the volumetric model. This
data is then used to identify the associated skeletal structure,
as presented in the last image of each sequence.

Individualized Posture Estimation. As the primary quantita-
tive metric of the volumetric distribution method, we measure
the accuracy of the classification of the patients posture based
on our six standard postures. For each posture, we collect
the ground-truth and 40 variants (with subtle movements)
to provide a sufficient training set applicable to the limited
posture set. This results in 240 data sets in total, with 60 used
for training and 180 data sets utilized for testing. The confu-
sion matrix illustrated in Figure 15 shows the performance of
the classification rate for the trained system, resulting in an
average ∼94.45% classification accuracy.
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Fig. 15. Individualized confusion matrix for the six identified postures. The
correlation between the postures (as shown in Figure 14), illustrates a ≈ 90%
classification accuracy. Similar postures incur misclassification due to changes
in the patient’s joint locations (such as the wrists or elbows).

Cross-patient Posture Estimation. Individual body structure
plays a significant role within posture estimation algorithms
that do not use features, however based on the generalized
volumetric model of the body used to classify the identified
skeletal posture, this method can also be applied across
several patients with similar body shapes and sizes, obtaining
reasonable results. The confusion matrix in Figure 16 shows
the classification results of the postures provided by three
individuals based on a pre-trained posture set formed from
a single individual, with avg. accuracy ∼90.62%.

90.62%

6.25%

0.00%

0.00%

0.00%

3.12%

9.38%

90.62%

0.00%

3.12%

3.12%

3.12%

0.00%

0.00%

96.80%

6.25%

0.00%

0.00%

0.00%

0.00%

9.38%

84.38%

3.12%

0.00%

0.00%

0.00%

0.00%

0.00%

93.75%

6.25%

0.00%

0.00%

0.00%

0.00%

6.25%

87.50%

(a) (b) (c) (d) (e) (f)
Target Class

(a)

(b)

(c)

(d)

(e)

(f)

O
u
tp

u
t 
C

la
s
s

0

20

40

60

80

Fig. 16. Confusion matrix illustrating the accuracy of the posture estimation
tested against a set of 3 patients that did not contribute to the training of the
CNN used to perform the classification.

Impact of Training Network Structure. The introduction of
additional layers within the CNN improves the performance of
classification in both experiments, but we still observe dimin-
ishing returns. We tested the CNN from 1 to 4 convolutional
layers and illustrate the corresponding classification accuracies
of the individualized experiment within Table I.

TABLE I
CNN POSTURE CLASSIFICATION PERFORMANCE

# of convolutional layers 1 2 3 4
Accuracy (%) 76.67 88.33 91.67 94.45
# of weights (millions) 1.2 2 2.8 3.11
Training time (minutes) 4.5 8.5 15 20.5

Evaluation and Discussion. There are three primary con-
siderations employed within the design of these results that
are addressed within this study: (1) the trained set is based
on a discrete enumeration of skeletal postures, limiting the
skeletal movement resolution, (2) the entire voxel volume is
utilized without features, so large variance in body-type re-
duces accuracy, and (3) skeletal refinement algorithms have not
been employed, thus the resulting skeletal movement between
enumerated training postures is discrete. These issues can be

properly addressed through providing an extensive training set
of postures from numerous patients, feature localization and
extraction, and a joint refinement algorithm that compensates
for the disparity between the trained skeletal structure and
the patient’s actual joint positions, all of which are potential
future extensions of this method. The implemented volumetric
reconstruction algorithm also provides a means of accurately
modeling and visualizing the volumetric posture of a patient
within an occluded region. This allows the this method to be
applied to numerous additional medical imaging applications
such as patient monitoring, gait analysis, and thermal distribu-
tion modeling for studies with similar occlusion constraints.

IX. CONCLUSION

In this work we have introduced a novel approach for
integrating thermal and depth imaging to form a volumetric
representation of a patient’s posture to provide occluded
skeletal joint estimates for trained sleeping postures. By ex-
tending this approach to define a patient’s unique thermal
distribution, we have introduced a new method for correlating
a patient’s unique heat signature with our motion-capture
inspired ground-truth estimate of the patient’s skeletal posture
for generating occluded joint positions, illustrated through
the application to six predefined postures with an average
classification accuracy of ∼94.45% for an individual and an
accuracy of ∼90.62% for untrained patients.
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